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Demagnetizing Factors of Rectangular
Prisms and Ellipsoids

Du-Xing Chen, Enric Pardo, and Alvaro Sanchez

Abstract—\We evaluate, using exact general formulas, the flux- have to be defined along the axis, which are relevant to the mid-
metric and magnetometric demagnetizing factorsNy,.., ofarect-  plane and volume average of demagnetizing field and magneti-
angular prism of dimensions2a x 2b x 2c¢ with susceptibility zation, respectively. BottV,,,, are functions of the length-to-

x = 0 and the demagnetizing factor,/NV, of an ellipsoid of semiaxes . . . L
a, b, and ¢ along thec axis. The results as functions of longitudinal diameter ratioy of the cylinder and the susceptibility of the

and transverse dimension ratios are listed in tables and plotted in Material. Early derivations oV, in the 1920s and 1930s were
figures. The three special cases df >> (ca)'/2,b < (ca)'/?, performed using one-dimensional (1-D) models fors 1,
anda = bare analyzed together with the general case, to quantita- and the values oV, at smally were obtained by extrapolation
tively show the validity of approximate formulas for special cases. through fits to experimental data and comparison with theoret-

N¢ ., Of pri ith i I f b timated to . . . . .
anf éccﬂrgélys r;bsom 10%2)/3?:&”1\;3:650? ;(ri;nn?é/ W(iethezln:wabeareo ical N of ellipsoids. The results were later compiled and cited

very near those of cylinders, for which they dependence has been in Bozorth’s book [4]. In the 1960s, a significant development
calculated quite completely; 2) thex dependence of the transverse was realized in two-dimensional (2-D) calculatio$; ,,, for
Ny,m of prisms with b = oo (rectangular bars) have recently been y — 0 and any values of were derived exactly using existing

calculated completely; and 3)N s, (x = oo) for prisms of great 41135 of self- and mutual-inductance of solenoids Ahd
longitudinal dimension ratios are close ta/N of the corresponding f — _1 andoo in th . 095 < ~ < 4 I
_ellipsoids. Thus, th_e existi_ng very incomplete results can be used orx = — ar_1 o Inthe region 0f.2o = v = was cal-
in some cases satisfactorily, although much work has to be done culated to a high accuracy [5]-{8]. Afterwards, quite accurate

before the actual x dependence ofNy .. is available as it is for ~calculations ofV, for a wider range ofy andy were made with

cylinders. the help of computers [9], [10], and theandy dependence of
Index Terms—Cylinders, demagnetizing factors, ellipsoids, Vf,» Was practically completed and discussed for cylinders in
prisms. [1], [11].

Besides cylinders in the axial directiofV; ., for cylinders
(disks) in the radial direction were recently calculated for some
cases [12], [13]. Similar calculations were made alsofgr

HE study of demagnetizing factors of homogeneousf tubes in the axial direction [14], which may be compared
bodies has been a classical topic in magnetism [1]. Faith a simple approximation of the tangentisi),, of thin-wall
a homogeneous ellipsoid placed in a uniform applied fielthgs in the radial direction [15]. In [16]-[18], the pole and field
H,, the magnetizatioM and internal demagnetizing field distributions around the cylinder edges or the cusps of an astroid
H, are both uniform, withH; = —NM. The factorN is of revolution were systematically studied. For ac demagnetizing
a diagonal tensor if the;, %, and z coordinates are choseneffects, the susceptibility spectrum of a magnetic conducting
along the principak, b, andc semiaxes of the ellipsoid, andsphere was derived exactly [19].
its three component®/,, IV;, and N.. are referred to as the The above theoretical works for demagnetizing factors of
demagnetizing factors corresponding to the three semiaxeginders have excited great interest of experimental studies
Formulas for these factors were derived at the beginning of tf#]-[24], and led to a major revision of an ASTM standard
last century, and their directly usable form with tabular ang@s].
graphical evaluations was first given by Osborn and Stoner inMost magnetic materials are rectangular prisms in shape
1945 [2], [3]. (bars, tapes, ribbons, and films). However, owing to their

Experimentally, the first simple and interesting shape of tharee-dimensional (3-D) nature, the calculations of the demag-
bodies was cylindrical. Since in a cylinder either or both afetizing factors of rectangular prisms started much later than
the magnetization and demagnetizing field are nonuniform, twieose for cylinders. Main works were carried out in the 1950s
demagnetizing factors, fluxmetri¥ ; and magnetometrid/,,,, and 1960s; formulas oV, ., were derived by Rhodes and

Rowlands and Joseph for a general prismyof= 0 and by
Brown for an infinite bar (mathematically 2-D prism) fgr= 0
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an easy task, since increasing the number of dimensions from :E arctan ab
two for a cylinder to three for a prism does not mean a 50% but "o cva? + 0% + 2
thousands times more calculations and the increase of two edges 1 1
g + —— (I + )+ ——[Fn(a,b,0)

of a cylinder to 12 of a prism will also raise significantly diffi- 3rabe Irabe
culties with accurate calculations. An estimate for the amount of + Fo.(b,a,¢c) — F(c,a.b) — Fi,(¢,b,a)]  (2)
work in 3-D calculations may be made below. As is known, if
x Is constant, pole density is zero inside the body and there e\t
only surface poles. In the 2-D case of cylinder, if we set foreach F, = \/4a2 + ¢2 + \/4b2 + ¢2
dimension independent surface elements (rings), there will be _ \/m e
2n independent elements over the entire surface. In the 3-D case 3 .3 3
of prism, the corresponding number of rectangular elements for Fy=a”+b"—2c
each dimension ig?, so that the total number of independent +(a® +0* —27) Va2 + b2 +c2
elements on the e_ntire surface will 8e?. S_etting areasonable  p _ (262 — )Va2 + 2 + (262 — bQ)\/m
numbern = 60, this means that the required elements number 5 | 12\3/2
in the 3-D case is T0times greater than in the 2-D case, and — (@ + %)
a factor of more than F0of increase in the computation time Fr(u,v)
yvillhbe:?%eded. Fqlrl'[hermore, ahn extra dimension ratl;o invoI\;]ed : 2 (8u? + 4v? + & + duv/du? + 4% + 32)
in the 3-D case will increase the computation time by another =wuln
factor of 1G. Thus, compared with cylinders, more thar? 10 (407 + ¢2) (8u? + & + duv/4u? + &)
times of computation time is required for prisms in order to get Fo(u, v, w)
a complete set N ,,,. ol (u? 4+ w?) (v? + 20% + 2vVu? + v?)

Thus, further calculation oV, of prisms can only be made swvE (W2 + 207 + w2 + 20v4 + 2 T w?)
step by step owing to its difficulty and great time consumption. i )
On the other hand, owing to the complexity related to their 3-D The computedV; and.V,,, for such a uniformly magnetized
nature, the already completed analytical works on ellipsoids aff$tangular prism along the axis as functions of:/b and
on rectangular prisms of = 0 are still not as well known ¢/(ab)/? are listed in Tables | and Il and plotted in Fig. 1(a)
and applicable as those for cylinders. There are not systematil (D), respectively.
and comprehensive data tables and figures on the demagnetizing
factors analytically derived. Data tables are quite popular f8 Ellipsoid

some special cases as the transve¥gg, of an infinite barand  The formulas ofVs for a general ellipsoid have been derived

the longitudinal Ny ., of a square bar [5], [29], [30], but it is jn [2], [3]. Assuming the semiaxeg, &', and<’ of the ellipsoid
difficult to know how big the error is if the body shape is nofo meets’ > ¥/ > ¢/, the N's along these axes are

exactly what is assumed. Therefore, it is necessary and possible

ge re

to make a systematic evaluation B ,, of prisms from the Ny :%[F(k,e) — E(k,0)] 3
existing analytical formulas. sin” Ok

Since itis very useful to compare the existing results of prisms :M
with those of ellipsoids and cylinders, we will make a sum- sin” 0k2(1 — k?)
marized presentation of all of these in the present paper. After 5 k? sin @ cos 6
giving the necessary exact formulas and their approximations, X [E(kv 0) = (1 = k) F(k,0) - cos ¢ }
we will evaluate accurately demagnetizing factors in a wide ()
range of dimension ratios. The results will be presented as ta- 0 ind
bles for convenient use and as figures to clearly show the gen- N, = ,Cgsd)cos [Sm cosp _ E(k, 9)} (5)

sin® 0(1 — k2?) cos

eral features. Based on the analysis and discussion on the data,
and the transvers¥; ,,, of rectangular bars, whose computationvhereF'(k, #) and E(k, 8) are elliptic integrals of the first and
has just been completed [31]-[33], we will suggest a temporasgcond type, and

approach to obtaitV ,,(x) from the present very incomplete / 1%

! : c sin ¢
results with often practically acceptable accuracy. cosl = —, cosp=—, k=
a a

sin’

In order to calculate the demagnetizing factddmlong thez
axis as a function of dimension ratios consistent with the case
A. Rectangular Prism of the rectangular prism, we have to redefine the three semiaxes

The formulas ofV; and.N,,, for a general rectangular prism!Nt0 @, b, andc that are along the, y, and- axes, respectively, so
of 2ax2bx 2cfor x = 0 have been derived in [26]—[28]. We gi\,ethat thgc axis _pargllel to the magnetlzatlon_can take any length.
them below in a slightly simpler equivalent form. Assuming th€hoosing arbitrarily’ = 1, a’ and<’ as functions of parameters
semiaxes:, b, andc to be along ther, y, andz directions,N;  @/b andc/(ab)'/? are expressed as follows.

Il. DEMAGNETIZING FACTORS IN THE GENERAL CASE

and,, along thez axis are 1) If ¢/(ab)*/? < (b/a)*/?, thenN = N, with o’ = a/b
dab andcd = ¢/(ab)t/?a’*/2.
Ny = e T T & 2) If (b/a)/? < c¢/(ab)/? < (a/b)M/?, thenN = Ny
c with o' = (a/0)Y?/[c/(ab)}/?] andd = (b/a)/?/
+ 5L+ Fp(a,b) + Fy(b a)] (€ [c/(ab)/?].
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TABLE |
DEMAGNETIZING FACTOR N;(0) FOR A RECTANGULAR PRISM OF 2a X 2b X 2¢ ALONG THE ¢ AXIS AS A FUNCTION
OF ¢/ (ab)*/? AND a/b. “—" MEANS “SAME AS THE DATA ON THE LEFT”
¢/vVab |afb=1 2 4 8 16 32 64 128 256
0.001 |0.995 0.9947 0.9939 0.9925 0.9903 0.9873 0.9832 0.9776 0.9702
0.0015|0.9929 0.9925 0.9914 0.9894 0.9863 0.9821 0.9764 0.9686 0.9584
0.002 |0.9909 0.9904 0.989 0.9864 0.9826 0.9772 0.97 0.9603 0.9475
0.003 }0.9871 0.9865 0.9844 0.9808 0.9755 0.9681 0.9581 0.9448 0.9275
0.005 {0.9802 0.9792 0.976 0.9706 0.9626 0.9515 0.9367 0.9173 0.8923
0.007 [0.9738 0.9724 0.9683 0.9612 0.9508 0.9365 0.9175 0.8928 0.8612
0.01 [0.9648 0.963 0.9576 0.9482 0.9346 0.9159 0.8914 0.8598 0.8199
0.015 |0.9511 0.9486 0.9412 0.9285 0.9101 0.8852 0.8528 0.8117 0.7609
0.02 ]0.9384 0.9354 0.9261 0.9105 0.8879 0.8576 0.8186 0.7698 0.7104
0.03 10.9153 0.9112 0.8988 0.878 0.8482 0.8089 0.7591 0.6984 0.6269
0.05 {0.875 0.8691 0.8515 0.8223 0.7814 0.7286 0.664 0.5885 0.5046
0.07 |0.8398 0.8324 0.8106 0.7748 0.7254 0.6631 0.5892 0.5062 0.4186
0.1 0.7933 0.7842 0.7573 0.7138 0.6552 0.5834 0.5017 0.415 0.3297
0.15 ]0.7275 0.7161 0.6831 0.6307 0.5624 0.4828 0.3979 0.3146 0.2397
0.2 0.6717 0.6588 0.6214 0.5635 0.4903 0.4087 0.3263 0.2506 0.1865
0.3 0.5803 0.5653 0.5232 0.4603 0.3854 0.3079 0.2362 0.1756 0.1278
0.5 0.4473 0.4314 0.3879 0.3273 0.2614 0.1999 0.1483 0.1079 0.07754
0.7 0.3544 0.3394 0.2997 0.2469 0.1929 0.1451 0.1066 0.07712 0.05532
1 0.2587 0.2465 0.2148 0.1745 0.1348 0.1009 0.07398 0.05355 0.03846
1.5 0.1639 0.1561 0.1362 0.111 0.08635 0.0651 0.04808 0.03503 0.02528
2 0.1109 0.1062 0.09382 0.07774 0.06142 0.04693 0.03503 0.02572 0.01868
3 0.05864 0.05685 |0.05183 0.04463 0.03657 0.02879 0.02199 0.01642 0.01207
5 0.02363 0.02326 0.02213 0.0202 0.01761 0.01465 0.0117 0.009037 0.00681
7 0.01249 0.01238 |0.01202 0.01134 0.01031 0.008954 0.007433 0.005927 0.004575
10 0.006242 0.006213 [0.006115 |0.005918 |0.00558 0.005071 0.00441 0.003665 0.002925
15 0.002805 0.002799 |0.002778 |0.002734 }0.002652 0.002512 0.002298 0.002014 0.001686
20 0.001584 0.001582 |0.001575 |0.00156 0.001532 0.001481 0.001396 0.001268 0.001103
30 0.0007058 0.0007054|0.000704 |0.0007011 [0.0006952 |0.0006838 |0.0006631 0.000628 0.0005746
50 0.0002544 —— 10.0002542 (0.0002538 |0.000253 0.0002515 |0.0002484 0.0002428 |0.0002328
70 0.0001299 —— [0.0001298 [0.0001297 |0.0001295 |(0.0001291 |0.0001283 0.0001267 |0.0001238
100 0.00006365 —— {0.00006363 0.00006361) 0.00006356 |0.00006346 |0.00006326 |0.00006287 |0.00006211
150 0.00002829 —_— —_— 0.00002828]0.00002827 |0.00002825 |0.00002821 |0.00002814 |0.00002798
200 0.00001591 e e —_— — 0.0000159 10.00001589 |0.00001586 [0.00001581
300 0.000007073 | — _— —_— 0.000007072}0.000007071 0.000007069 |0.000007064( 0.000007054
500 0.000002546 | —— — —_— -_— —_— _— 0.000002545 0.000002544
700 0.000001299 | —— —_— — e _— —_ —_ _—
1000 0.0000006366] —— —_— —_— e —_ 0.0000006365| —— e
3) If ¢/(ab)t/? > (a/b)}/?, then N = N, with ¢’ = Bothformulas are quite accurate with a negative error; the error
(b/a)Y?¢/(ab)}/? andd = b/a. is only ~ —1% for Ny and N,,, whenp is reduced to 3 and 2,

The computedV for an ellipsoid along theaxis as a function of respectively.
a/bandc/(ab)/? is listed in Table 1ll and plotted in Fig. 1(c). Forb = oo andx = oo, Brown obtains

Ny =E(k) — K?K(k) (10)
Ill. DEMAGNETIZING FACTORS IN SPECIAL CASES 2 N2 /
" N, _ALER) = FPEMIBE) = PEE)] o))
A. Case ob > (ca)l/ p k2
2
In the first special case, there is an aiis much longer than :M (12)
the other two, along one of which the magnetization occurs. This E(k) — 2K (k)
condition is expressed by > (ca)!/2, the limit of which at E? 4+ k=1 (13)
b = oo was treated by Brown for an infinite bar [S]. Definingwhere K and E are complete elliptic integrals of the first and
2 2 4 For an ellipsoid ob = oo, the NV along thec axis is calculated
N =—d e - - -
;== arctan P In <1 + p2> (6) as [2], [5]
1 1 —p? 5 1
N,, =— |4arctan —+2pln p+ ln(14+p%)| . (7) = (14)
27 P P 1+p
The highy limits of these are wherep = ¢/a, the same as for the prisms above.
Ny :Z <1 _ ig) 8) _The computed demag_netiz_ing factor_s &, Ny, (prisms
p 3p with x = 0), and N (ellipsoids) for this case as functions

[ 3 9 of ¢/a are calculated using the general formulas and plotted
™ T ap nptg)- ©) in Fig. 2(a)—(c), respectively. In these figurég(ca)'/? is a
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TABLE I
DEMAGNETIZING FACTOR N, (0) FOR A RECTANGULAR PRISM OF 2a X 2b X 2¢ ALONG THE ¢ AXIS AS A FUNCTION OF ¢/ (ab)*/2 AND a/b
c/vVab | a/b=1 2 4 8 16 32 64 128 256
0.001 | 0.9951 0.9949 0.9941 0.9927 0.9906 0.9877 0.9837 0.9783 0.9712
0.0015 | 0.9931 0.9927 0.9916 0.9896 0.9867 0.9826 0.9771 0.9697 0.9599
0.002 | 0.9912 0.9907 0.9893 0.9868 0.9831 0.9779 0.971 0.9617 0.9495

0.003 | 0.9875 0.9869 0.9849 0.9814 0.9763 0.9692 0.9596 0.9469 0.9305
0.005 | 0.9808 0.9798 0.9768 0.9716 0.9639 0.9533 0.9392 0.9208 0.8972

0.007 | 0.9746 0.9733 0.9694 0.9626 0.9527 0.939 0.921 0.8977 0.8681
0.01 0.966 0.9643 0.9591 0.9502 0.9372 0.9195 0.8964 0.8668 0.8297
0.015 | 0.9529 0.9506 0.9435 0.9314 0.914 0.8906 0.8602 0.8222 0.7755
0.02 0.9409 0.9379 0.9292 0.9144 0.8931 0.8647 0.8285 0.7836 0.7297
0.03 0.919 0.9151 0.9034 0.8838 0.856 0.8195 0.7739 0.7189 0.6551
0.05 0.881 0.8755 0.859 0.8319 0.7942 0.7461 0.688 0.6212 0.5482
0.07 0.8481 0.8413 0.8211 0.7882 0.7432 0.6872 0.6218 0.5495 0.4741
0.1 0.8051 0.7967 0.7721 0.7326 0.68 0.6166 0.5456 0.4709 0.3969
0.15 0.7448 0.7345 0.7047 0.6581 0.5981 0.5292 0.456 0.3836 0.3158

0.2 0.6942 0.6826 0.6495 0.5987 0.5354 0.4653 0.3939 0.3259 0.2646
0.3 0.6124 0.5995 0.5629 0.5089 0.4448 0.3775 0.3126 0.2537 0.2026

0.5 0.4959 0.4825 0.4458 0.394 0.3359 0.2783 0.2256 0.1797 0.1413
0.7 0.4157 0.4032 0.3694 0.3228 0.2719 0.2228 0.1788 0.1412 0.1101
1 0.3333 0.3226 0.2939 0.2549 0.213 0.1731 0.1379 0.1081 0.08381
1.5 0.2492 0.241 0.2192 0.1896 0.1578 0.1276 0.1011 0.07889 0.06085
2 0.1983 0.1919 0.1747 0.1512 0.1258 0.1017 0.08044 0.06264 0.0482
3 0.1404 0.136 0.1241 0.1077 0.08987 0.07277 0.0576 0.04482 0.03444
5 0.08832 0.08564 0.0784 0.06837 0.05737 0.04669 0.0371 0.02894 0.02226
7 0.06436 0.06245 0.05726 0.05007 0.04215 0.03444 0.02747 0.02149 0.01657
10 0.04573 0.04439 0.04075 0.03571 0.03015 0.02472 0.0198 0.01555 0.01203
15 0.03084 0.02994 0.02752 0.02416 0.02045 0.01682 0.01352 0.01067 0.008283
20 0.02326 0.02259 0.02077 0.01825 0.01546 0.01274 0.01027 0.00812 0.006324
30 0.0156 0.01515 0.01394 0.01225 0.0104 0.008582 | 0.006929 | 0.005497 | 0.004296
50 0.0094 0.009132 | 0.008404 | 0.007395 | 0.006281 | 0.005191 | 0.0042 0.00334 0.002618
70 0.006728 | 0.006536 | 0.006016 | 0.005295 | 0.004499 | 0.003721 } 0.003013 | 0.002398 | 0.001883
100 0.004716 | 0.004582 | 0.004218 | 0.003713 | 0.003156 | 0.002611 | 0.002116 | 0.001686 | 0.001325
150 0.003148 | 0.003058 | 0.002815 | 0.002479 | 0.002108 | 0.001745 | 0.001414 | 0.001127 | 0.0008868
200 0.002362 | 0.002295 | 0.002113 | 0.001861 | 0.001582 | 0.00131 0.001062 | 0.0008468 | 0.0006664
300 0.001576 | 0.001531 | 0.00141 0.001241 | 0.001056 | 0.000874 | 0.0007088 | 0.0005654 | 0.0004452
500 0.0009458 | 0.0009189 | 0.0008461 | 0.0007452 | 0.0006338 | 0.0005248 | 0.0004257 | 0.0003397 | 0.0002675
700 0.0006757 | 0.0006565 | 0.0006045 [ 0.0005324 | 0.0004529 | 0.000375 | 0.0003042 | 0.0002428 | 0.0001912
1000 0.000473 | 0.0004596 | 0.0004232 | 0.0003728 | 0.0003171 | 0.0002626 | 0.000213 | 0.00017 0.0001339

parameter indicating the greatnessigklative toc anda. We computed using the general formulas as functions/ef and
see thaib/(ca)!/? = 10 is enough to be practically regardedplotted in Fig. 3(a)—(c). In these figure@a)!/2/b is a param-
as infinity if ¢/a is not large, and it/a is as large as 100, oneeter to indicate the smallness bfelative toc anda. We see
needss/(ca)'/? = 100 to consider it as infinity. that if ¢/a is not too small andca)'/2 /b = 100, (15) and (16)
The demagnetizing factors far= oo will be discussed later. can be used for ellipsoids with very small error. The situation

of N of prisms is much better; its higfea)'/2/b limit can

_ _ _ _ be satisfactorily used even f6ta)/2/b = 1 if ¢/a > 10 and
The second special case is the opposite oneiwdth(ca)/2. (ca)/2/b = 10 if ¢/a > 0.1, and when(ca)/2/b = 100, it

case of prisms. For ellipsoids, we use Osborn’s results and Wijii&it can be found in this case

B. Case ob < (ca)'/?

N along thec axis as 3/2
b : Ve, 24y an

N=—p [E(k) — (1—k{) K(k)] (p<1)  (15) b 7 \ec

o which is accurate until 1% fot/a > 10 if (ca)'/?/b = .
N :a_b[K(/fz) — E(k2)l(p>1) On the contrary, the situation &¥,,, of prisms is much worse;

k3 its high{ca)'/2 /b value increases witfra)*/2 /b continuously
kI =1-p* without a limit.
2 —2
=l (16) C. Caseolr = b

wherep = ¢/a and K and E are complete elliptic integrals of } . i
the first and second type. We note that two simple formulas on! "€ 1ast special case is a well-known oaes b, i.e., a square

this, which were occasionally used, are incorrectly written ianar_and an eIIipsoid_ of revolution. In orc_ier to facilitate the com-
popular textbook [34]. parison between this case and the cylinder of half-lengthd

We find from (15) and (16) thaN multiplied by (ca)*/2 /b radiuse with a dimension ratier = ¢/a studied in[1], we define

will be a function of p only. Therefore, Ns(ca)/?/b, VA 18
N (ca)t/?/b, and N(ca)'/2 /b for prisms and ellipsoids are T /A (18)
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DR AL AL The high<y limit of V is
E 1
10 a, _ Its accuracy is better than 1% whern> 12.
It is not easy to obtain significantly simplified formulas for
=10 7 3 a square bar, although a very simple formu\g, = (2¢/a +
0 i ] 1)~1, may be used with a maximum error of 5.5% [29]. On the
! other hand, it has been widely thought that the demagnetizing
10 6- 3 factors of a square bar should be similar to those of a cylinder of
‘E () 3 the samey defined by (18). Since th& ; and.V,,, for cylinders
10 7% | Lol sl sl v ol have been studied rather completely, it will be invaluable to use
0.001 ' ’ C/(aé)iﬂ 10 ! the results of cylinders as an approximation of square bars if it
LBLRRELLL T TTTTHH T r'lj"fl!ll] T TTITIn| T TTTITH| IS pOSSiblean Of Square bars % = 0 WaS Compared With
1k - o that of cylinders in [30], wherév,,, of the bars involved some
E 3 systematic error. We will make an accurate comparison for both
By ] Ny and N, here.
10 3 For a cylinder ofy = 0 [1]
g - Ny =1 = 2ymks[K(ky) — E(kf)] (22)
<10 a/b=1 3 4
F s e Nrn =1-—
Lo 16 ] 37
o -1 5% W 1
{1 0K ) + (1= 2B -
g ®) s SRR (23)
. 0.01 .1 1 10 00 100 oo )
oot C/(ab)l/2 ' where K and E are complete elliptic integrals of the first and
T T TTTI LENLBLICALEAt ] S S M L1} T T TTII T T 7T T T Second type’ and
1E T 3 L 4
r ~Z 3 =
C ] 4 + 2
107 E !
3 E by =—.
10 L . 1492
> The high< limits of (22) and (23) are
o b=1 ] 1
0% g Np=— (24)
Eo----- 16 E 22
o - i 4 1
107 - -- 256 E . (25)
: ] "3y 82
g le) N If v > 20 for N; andy > 1.4 for N,,, the accuracy of both
0.001 0.01 01 /( é)1/z 10 100 1000 formulas is better than 1.5%.
c/la For a cylinder ofy = oo, the high+ limits of N ,, are [11]
Fig. 1. (a)N, and (b)N,,. of rectangular prisms foy = 0 and (c)N of Nf :i In2v — § (26)
ellipsoids along the direction as functions af/(ab)'/2 anda /b. 2 2
3 7
Np=—|Indv—-=}. 27
sz (- ) @n

whereA is the cross-sectional area (midplane). Sidce 7a?, _ . :
rab, and4ab for a cylinder, ellipsoid, and prism, respectively, Forx = 0, the relative difference iV, and N,, between
this formula givesy = ¢/a for both the cylinder and ellipsoid @ square bar and a cylinder calculated using exact formulas,

of revolution andy = y/7c/(2a) for the square bar.

For ellipsoids of revolution)V along thec axis is calculated

.
Yee

v

as
1
N = =
1—»v
1
N =
¥ -1
1
=1

Yee

R
Ve

arccos y

arccosh y — 1]

ln(’y—i—m)—l

(v<1)

(19)

(v >1).

(20)

ONgm/Njm [Npm(bar) — Nym(cyD]/Nym(cyl), is
shown in Fig. 4(a). We see that baoiy, and vV, for the bar

are less than those for the cylinder. The maximum difference
occurs aty ~ 0.5, being—1.9% (Ny) and—1.6% (N,,). The
high-y difference is negligible forN; and —1.2% for N,,.
Without data calculated from exact formulas, a comparison in
Ny for x = oo can be made between bars and cylinders using
the data obtained numerically in [9]. The maximum difference
—3.5% occurs aty = 0.5 and 1 and the high- difference is
—1.6%. These are qualitatively similar to the caseyot= 0.
Therefore, a cylinder may be a good approximation of a square
bar concerning bothV; and V,,, if a common longitudinal
dimension ratio is defined from the cross-sectional area.
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TABLE Il
DEMAGNETIZING FACTOR N FOR AN ELLIPSOID OF SEMI-AXES @, b, AND ¢ ALONG THE ¢ AXIS AS A FUNCTION OF ¢/ (ab)'/2 AND a/b

¢/vVab |ab=1 |2 4 8 16 32 64 128 256

0.001 [0.9984 0.9983 0.9979 0.9971 0.99% 0.9944 0.9921 0.9888 0.9843
0.0015(0.9976 0.9974 0.9968 0.9957 0.994 0.9916 0.9881 0.9833 0.9766
0.002 {0.9969 0.9966 0.9957 0.9942 0.992 0.9888 0.9842 0.9779 0.969

0.003 {0.9953 0.9949 0.9936 0.9914 0.9881 0.9833 0.9765 0.9672 0.9542
0.005 (0.9922 0.9915 0.9894 0.9857 0.9803 0.9724 0.9615 0.9465 0.9259
0.007 {0.9891 0.9881 0.9852 0.9801 0.9726 0.9618 0.9469 0.9266 0.8993

0.01 |0.9845 0.9831 0.979 0.9718 0.9613 0.9463 0.9259 0.8983 0.8621
0.015 (0.9769 0.9749 0.9688 0.9583 0.943 0.9216 0.8928 0.8549 0.8064
0.02 |0.9694 0.9667 0.9587 0.9452 0.9254 0.8981 0.862 0.8154 0.7576
0.03 [0.9546 0.9508 0.9393 0.9199 0.8921 0.8546 0.8063 0.7465 0.6757
0.05 {0.9262 0.9202 0.9024 0.8731 0.832 0.779 0.7141 0.6386 0.5555
0.07 [0.8991 0.8913 0.8682 0.8307 0.7795 0.7156 0.6407 0.5579 0.4717
0.1 |0.8608 0.8506 0.821 0.774 0.7119 0.6377 0.5552 0.469 0.3846
0.15 |0.8026 0.7895 0.7521 0.6944 0.6217 0.5396 0.454 0.3706 0.294

0.2 |0.7505 0.7355 0.6929 0.6291 0.5514 0.4675 0.3839 0.3062 0.238
0.3 |0.6614 0.6442 0.5967 0.5282 0.4491 0.3685 0.2932 0.2272 0.1723

0.5 [0.5272 0.5097 0.4623 0.3969 0.3258 0.258 0.1987 0.1497 0.1109
0.7 {0.4321 0.416 0.3731 0.3152 0.2541 0.1978 0.1499 0.1115 0.08171
1 0.3333 0.32 0.2848 0.2379 0.1894 0.1456 0.1092 0.08041 0.0585
1.5 10.233 0.2235 0.1983 0.165 0.1307 0.09996 0.07454 0.05464 0.03958

2 0.1736 0.1666 0.1482 0.1236 0.09819 0.07521 0.05614 0.04116 0.02981
3 0.1087 0.1046 0.09374 0.07901 0.06345 0.04909 0.03694 0.02725 0.01981
5 0.05582 0.05399 0.04902 0.04213 0.03461 0.0274 0.02104 0.01578 0.01162
7 0.03461 0.03358 0.03078 0.02685 0.02245 0.01811 0.01416 0.0108 0.008057
10 0.02029 0.01975 0.01828 0.01618 0.01379 0.01136 0.009087 {0.007072 |0.005374
15 0.01075 0.0105 0.009813 ]0.008823 |0.007672 |0.006475 |0.005314 [0.004246 {0.003307
20 0.006749  [0.006607 |0.006212 |0.005639 |0.004968 |0.004259 |0.003558 |0.002898  [0.0023
30 0.003444  {0.00338 0.003201  |0.002941 |0.002632 |0.002302 [0.001968 [0.001644 |0.001341
50 0.001443  [0.00142 0.001354 |0.001259 |0.001146 |0.001023 [0.0008962 |0.0007706 [0.0006492
70 0.0008047 [0.0007927 |0.0007594 |0.0007105 |[0.0006521 [0.0005885 }0.0005228 |0.0004569 [0.0003921
100 0.0004299 |0.000424 |0.0004076 |(0.0003836 |0.0003548 {0.0003235 |0.0002909 [(0.0002579 |0.0002252
150 0.0002091 [0.0002065 ]0.0001992 |0.0001885 [0.0001756 [0.0001616 [0.000147 |0.0001322 [0.0001173
200 0.0001248 |0.0001233 |0.0001192 [0.0001132 |0.000106 |0.00009808 |0.00008984 |0.00008145 |0.00007301
300 0.00005997 10.00005931 }0.00005749 [0.00005481 }0.0000516 |0.00004808 |0.00004441 |0.00004066 |0.00003689
500 0.00002363 |0.0000234 {0.00002274 [0.00002177 |0.00002062 |0.00001935 |0.00001803 {0.00001667 |0.00001531
700 0.00001274 |0.00001262 (0.00001229 [0.0000118 |0.00001121 |0.00001056 |0.000009883|0.000009193}0.000008495
1000 0.000006601|0.000006542| 0.000006378| 0.000006137| 0.000005847] 0.000005531f 0.000005199 0.000004861( 0.000004518

In the above, all the demagnetizing factors without a directiare very close to those of a cylinder (especially #6f when
assigned explicitly are for theaxis. For ellipsoids or prisms of ~ is not near 1), we can use the results of cylinders for prisms
x = 0, (magnetometric) demagnetizing factohéq) for other quite satisfactorily. For this, we define another longitudinal di-
direction(s) may be obtained using the relatiopt- N, +N.=1. mension ratio

IV. DISCUSSION P (28)

VA
A. Some Rules for the Variations &f, and Ny of Prisms

In this section, we mainly discuss the featuresVgf andV, Which is equal ta/(ab)/2 for prisms and i2~/+/ for cylin-
of prisms;V of ellipsoids will be involved if it is closely related ders and ellipsoids. Th&; and IV, of square bar fox = 0
to Ny andV,,,. Some rules for the variations of,, and N, of ~are compared with those gf = oo for cylinders andV for el-
prisms may be summarized as follows. ”pSOidS of revolution as functions dfin Flg 4(b) ThENf and

There is a common feature for all the general and speci» Of prisms forb = oo andx = 0 are compared with those
cases of = 0; with increasing the longitudinal dimension ratic®f x = oo and.\ for ellipsoids ofb = oo as functions ot/a
c¢/(ab)*/? or ¢/a, N,, and N; decrease whilgV,,, /N;(>1) in Fig. 4(c). We see that whekor ¢/« is appreciably greater
increases. than 1

Concerning the transverse dimension ratio dependence, the
cases in Figs. 1-3 are differed¥,,,, N;, andN,,, /N, all de-

crease with increasing/b in Fig. 1; le%‘qu increase but |, this relation and hereafter, the number(s) within parentheses
N, [Ny decreases with increasibg(ca)/= in Fig. 2?]1\/77271 and  after N; andN,,, is the value ofy. However, there is a crossover
Nj decrease buv,,, /Ny increases with increasiriga)'//bin  occurring with decreasing or ¢/a, and we have ak or ¢/a

Fig. 3. ) appreciably less than 1 that
As to Ny and ¥V, of prisms foryx # 0, we have complete

data forb = oo [32], [33]. Since theV; andN,,, of a square bar N > N, (0) > N#(0) > Ny (o0) > Ng(o0).  (30)

Ny (0) > Nyp(o0) > N > Ny(oo) > Ny(0). (29)
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B. Longitudinal Dimension Ratio Dependence

For the longitudinal-dimension ratio dependence, we higEquations (17), (31)—(34) can be explained by the magnetic
light the first-order approximation a¥; andV,,, at greatc for  Coulomb law as follows.
the three special cases expressed in (8), (9), (17), (24), and (25).et us start with (33) for the prism of = 0. Writing the
Changingp andy back toc/a or ¢/(ab)'/? and considering the uniform magnetization a8/, the poles at both ends ate; —

first term only, (8), (9), (24), and (25) are rewritten as +4p0Mab. The field at the midplane produced by the poles
9 et iS Huia = —q/(27poc?) = —2abM /(mc?) according to the
Ny =— (—) (b > ca) (31) Coulomb law if the poles and the midplane can be regarded
7{ ‘c‘ 1 as coaxial points. This corresponds Ay = —Hpa/M =
Ny == (_) < (b Vea) (32) (2/m)(ab/c?), which is (33).
Toa s The case ob < (ca)'/? corresponds to the region of high
Ny _2 <L> (a =1b) (33) ¢/(ab)!/? and higha/b in the general case, wheré; is ex-
g ab pressed by (33) as will be further explained in Section 1V-C.
8 Thus, (17) may be easily obtained by substituting the condition

—1
C
T 3n3/2 ﬂ) (@=10). (34) 4 — (ca)'/?/s, s being constant, in (33).
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volume. Owing to the rapid decrease of the field produced by
a pole with increasing distance, the volume integration of the
field produced bytg = +4u0Mab on the ends is practically
saturated when is greater than a certain value. Thiif,, o
q/(8abc) x ¢~*, which is consistent with (34) for a fixegb.
In general v, decreases with the longitudinal dimension ratio
more slowly thanV,, so thatV,, /¥, increases with the same
ratio. In the 2-D case, since the field produced by a linear pole
decreases with distance more slowly than that by a point pole,
Ny in (31) is proportional tqc/a)~* as explained above, and
N, in (32) decreases witly a more slowly thar{c/a)~! by an
increasing factoln(c/a) owing to the continuously increasing
volume integration of the field with increasing

In the above when we explailN;, 3-D or 2-D coaxial point
poles and point midplane are considered (the three points in the
2-D case are located on the plane), so that all the straight
lines connecting a pole and the midplane, along which the local
fields act, are of lengtla and coincide with the axis. This is
practically justified only when the longitudinal dimension ratio
is great, i.e.q¢ (andb) is negligible compared with. With de-
creasing this ratio, the lines connecting many pairs of points be-
tween the end and midplane (“connecting lines”) become longer
than ¢ with a nonzero angle with the axis, so that the total
H..iq decreases. Therefore, all thé; curves in the figures
turn down with decreasing the longitudinal dimension ratio. The
same turning down occurs also fat,,, which is due to the de-
crease of the volume integration of the field with decreasing the
dimension ratio.

C. Transverse Dimension Ratio Dependence

Similar things occur withV; andV,,, when the transverse di-
mension ratio is increased. In Fig. 1(a) 16§ at great/(ab)*/?,
with increasingz /b, the lengths and angles of the “connecting
lines” are very close te and 0, respectively, so that (33) can be
satisfactorily used, and this is the main reason for (33) and (34)
of a = b to be written in terms of/(ab)'/? rather tharc/a. At
lowerc/(ab)/?, the effect of decreasing (ab)*/? is reinforced
by increasing:/b, so that theV, turning down is accompanied
by an appreciable decrease with increasifig With increasing
a/b, the nonzero-angle effect reduces the volume integration of

of a cylinder as a function of. (b) N;...(0) of rectangular (square) bars, the field at a fixedab, so that/V,, decreases with increasing

Ny . (co) of cylinders
Ny (0, 00) of infinite
as functions of:/a.

, andV of ellipsoids of revolution as functions &f. (c)
(2-D) rectangular bars an¥¥ of infinite elliptic bars

a/bin Fig. 1(b). SinceV,; does not change with increasingb
at highc/(ab)'/2, this means thaiv,, /N decreases with in-
creasinga/b.

In Fig. 3(a) and (b) at a givetya, N, decreases andl,,, /N

In order to explain (31) for the case bfs> (ca)/?, we need increases with increasin@a)'/2/b, which may be explained

to consider the 2-

D nature of the field whef{ca)/? = .

The field produced by the poles at the midplaneHig;q =

—[a/(20)1/(7poc)

based on the highf(ab)'/? feature in Fig. 1(a) and (b). For
convenience, we fix ande, and increaséca)'/? /b by a factor

—2aM /(nc) according to the Coulomb of 100. This corresponds to an increase tfzb)'/? anda /b by

law if the poles and the midplane can be regarded as infinitgbctors of 10 and 100, respectively. Since in the higteb)'/?
long and parallel straight lines on the same surface and the liggion of Fig. 1(a),N; varies in proportion tde/(ab)t/?] 2
density of poles istq/(2b) = +2p0Ma. This equation leads and does not change witlyb, N in this case should decrease

directly to (31).

by a factor of 1/100, which is consistent with the results in

In contrast to the-2 power-law for/N; expressed in (33), Fig. 3(a). On the other handy,, in Fig. 1(b) varies in propor-
the —1 power-law forXV,, expressed in (34) is a consequencton to [c/(ab)*/?]~* and decreases with increasiagh more
of the different definitions ofv,,, andV;. Vs concerns the av- slowly than(a/b)—1/2, so that¥,,, in this case should decrease
erage demagnetizing fiell,,;q on the midplane, whereds,,
concerns the average demagnetizing figlld, over the entire increase with increasinga)'/2/b.

by a factor greater than 1/100. In other words, /N, should
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TABLE IV
DEMAGNETIZING FACTORS ALONG THE ¢ AXIS AS FUNCTIONS OFc¢/a. THE FIRST FIVE, N,(0), N,.(0), Ns(20), Nn(o0), AND N, ARE FOR A
RECTANGULAR PRISM OR ELLIPSOID OF SEMI-AXES a, b — oo, AND ¢ WITH ¥ = 0 OR co. THE LAST Two, N,(0) AND N, ARE FOR
A RECTANGULAR PRISM AND ELLIPSOID OF SEMI-AXES @, b — 0, AND ¢

Vea/b— 0 Vea/b— oo
c/a Ny (0) New(0) N¢(e0) Nen(00) N 22N (0) =N
0.001 0.99726 0.99732 0.99669 0.99685 0.999 20.12 31.62
0.0015 0.99609 0.99618 0.99523 0.99547 0.9985 16.43 25.82
0.002 0.99497 0.99509 0.99383 0.99415 0.998 14.22 22.36
0.003 0.99284 0.99302 0.99115 0.99162 0.99701 11.61 18.26
0.005 0.98887 0.98918 0.98612 0.9869 0.99502 8.981 14.14
0.007 0.98517 0.9856 0.98139 0.98247 0.99305 7.582 11.95
0.01 0.97995 0.98057 0.97469 0.9762 0.9901 6.334 9.998
0.015 0.97186 0.97279 0.96426 0.96649 0.98522 5.159 8.161
0.02 0.96432 0.96555 0.95452 0.95743 0.98039 4.457 7.066
0.03 0.95035 0.95219 0.93654 0.94076 0.97087 3.621 5.765
0.05 0.92537 0.92844 0.90474 0.91135 0.95238 2.777 4.456
0.07 0.90302 0.90732 0.87679 0.88552 0.93458 2.323 3.756
0.1 0.8728 0.87893 0.83992 0.85146 0.90909 1.915 3.127
0.15 0.82853 0.83771 0.78792 0.80333 0.86957 1.525 2.529
0.2 0.78965 0.80184 0.74421 0.76274 0.83333 1.288 2.166
0.3 0.72299 0.74109 0.67338 0.69656 0.76923 1.001 1.725
0.5 0.61858 0.64779 0.57159 0.6003 0.66667 0.7029 1.267
0.7 0.53887 0.57797 0.5 0.53154 0.58824 0.5398 1.015
1 0.44868 0.5 0.42361 0.45695 0.5 0.3935 0.7854
1.5 0.34643 041161 0.34032 0.37386 0.4 0.2599 0.5704
2 0.27936 0.35221 0.2858 0.31826 0.33333 0.1865 0.4457
3 0.19876 0.27668 0.21779 0.24729 0.25 0.1113 0.3063
5 0.12413 0.19816 0.14884 0.17303 0.16667 0.05483 0.1831
7 0.089747 0.15677 0.11354 0.13389 0.125 0.0337 0.1276
10 0.063244 0.12107 0.083992 0.10042 0.090909 0.01993 0.08559
15 0.042316 0.089305 0.058749 0.071192 0.0625 0.01091 0.05342
20 0.031778 0.071555 0.045237 0.055271 0.047619 0.0071 0.03788
30 0.021205 0.052004 0.03103 0.038283 0.032258 0.00387 0.02307
50 0.012729 0.034454 0.01909 0.023777 0.019608 0.0018 0.01216
70 0.0090933 0.02614 0.013796 0.017265 0.014085 0.001087 0.007915
100 0.0063658 0.019433 0.0097469 0.012248 0.009901 0.0006366 0.004992
150 0.004244 0.013816 0.0065478 0.008257 0.0066225 0.0003465 0.002938
200 0.003183 0.01082 0.0049306 0.0062298 0.0049751 0.0002251 0.00201
300 0.0021221 0.0076435 0.003301 0.0041797 0.0033223 0.0001225 0.001172
500 0.0012732 0.0049113 0.0019877 0.0025215 0.001996 0.00005694 0.0005904
700 0.00090946 0.0036611 0.001422 0.0018056 0.0014265 0.00003439 0.0003746
1000 0.00063662 0.0026763 0.00099669 0.0012664 0.000999 0.00002014 0.0002307

In Fig. 2(a) and (b)/V,; increases andV,,, /IV; decreases with IV curves are drawn, and we can roughly estimateMhg o)
increasingy/(ca)'/? can be explained by the 3-D to 2-D transiand N ;(~c) curves according to the above rules.
tion. The field in the 2-D case is more uniform than in the 3-D 2) ApproximateN; ,,,(x): Without enough data oV, and
case, so thaW; is higher and closer t&/,,, with increasings. N, for x not being 0 andx, it is important to find out a prac-
tical way to useN; ,,(0, oo) for any value ofy. We introduce

D. Approximatey Dependence several expressions to estimate approximatély,, (x) at large

1) ApproximateN; ,,(c0): If the longitudinal dimension longitudinal dimension rati¢=10) as follows.

ratio is great, they dependence of demagnetizing factors is 1) Whenx > x£" = 1/Ny,.(c0), the following equation

qualitatively shown by expression (29). It is interesting that IS used:

when N,,,(0)/N;(0) increases rapidly with increasing the _

dimension ratio from 10 to 100 to 100QY,,(o0)/N (o) Npm(x) = Nym(00). (35)

remains almost constan/,,,(c0) /N (oc) increases from 1.32  2) Wheno0 < x < x™, the following equation is used for

to 1.44 to 1.47 for:/b = 1 as calculated from (26) and (27) and N

from _1.196 to 1.257 to 1.271 fdr= oo as ca_lculz_;\ted_ from the Ig No(x) = lg N,y (0) g1+ x)

Elata in Table IV. Moreover, th&/ curve of eII|_pso_|ds is chated lg Ny(o0) —1g N, (0)  lg (14 x2)
etweenV,,(cc) and N;(oo) curves, and with increasing the

dimension ratio from about 10V moves fromN,,(c0) to

N;(o0), as seen in Fig. 5(a) for the casefb = 1. These Ny

rules can be used for estimating the l_JnknoWn,(oo? and lg Ny(x) —lg Ny (Xg) lg(1+x) —lg (1 + Xg)

Ny(o0) at other values of transverse dimension ratios where — - =

no data are available. Two examples are given in Fig. 5(b) and 8 V#(50) =18 N (0) 151 4 ym) —1g (1 + Xg)

(c) for a/b = 16 and256. In both figures,N,,,(0), N((0), and (37)

(36)

3) WhenX{; < x < xZ., the following equation is used for
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Fig.5. (@) HighA portion of Fig. 4(b). (b)V;...(0) of rectangular prisms and Fi S 1AT ; r

; g. 6. (a) The longitudinalN; of cylinder, (b) the transverséV, of
N of ellipsoids as functions of, «/b = 16. (c) Same as (bj/b = 256. rectangular bar, and (c) the longitudinai,. of cylinder and the transverse
N, of rectangular bar at various values of dimension ratios as functions
of 1 + x (solid lines). Filled circles represent points of = 1/N; ,.(co)

f . .
wherey?{ is defined b
Xo y versusN; ,.(o0); dotted lines connecting open and filled circles are simple

N (Xf) approximation ofV, ., at0 < x < 1/Ny ,,.(o0). The two dashed lines in (a)
4 0 _ Nf(OO) (38) connecting two types of boundary points are a guide for the eye.
N0, (ngo)
. L In all figures, the filled circles give pointsy =
f
4) ]V\\Tlh.eno < x < xp, the following equation is used forl/Nﬁm(oo),Nﬁm —  Njpn(oc). We see that the differ-
, ence betweemV; ,,,(c0) (filled circle) and Ny ,,,[L/N s (o0)]
N R0 A0 . ;
Ny(x) = N4 (0). (39 (solid line) is 5%—15% for all cases, which means the maximum

error of (35) to be around 10%.

We now explain these equations using Fig. 6(a)—(c) In Fig. 6, The dotted lines fol,,, in Fig. 6(c) are drawn using (36), and
the solid lines are drawn based on the accurate data of th¢he dotted lines foV; in (a) and (b) are drawn using (37)—(39).
dependence aW; ,,, calculated in [1], [32], [33], presenting atFrom the departure of them from the corresponding solid lines,
various values of dimension ratios ¢r ¢/a) the longitudinal we see that the maximum error of all these approximate equa-
N; of cylinder (a), the transvers&; of rectangular bar (b), tions is the same as that for (35).
and the longitudinalV,,, of cylinder and the transverdg,, of The only remaining problem is how to determu@é using
rectangular bar (c) as functions bft . (38) if there is not an accurage dependence calculated. From
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Fig. 6(a), we see tha@g ~ xI /100 at~y > 100. The results  [7]
plotted in Fig. 1(a) and (c) suggest that such a relation may be
roughly used for/(ab)!/? > 100 and1 < a/b < 256. How- g
ever, a confirmation of this should be done by calculatingithe
dependence aV; at several values af/(ab)'/? anda/b = 1, o
16, and 256.

V. SUMMARY (10]

General formulas are presented in Section Il for fluxmetric
and magnetometric demagnetizing facta¥g,andN,,, of rect-

angular prisms 02a x 2b x 2c along thec dimension for suscep- 12
tibility xy = 0 and demagnetizing factors,., V,/, and N, of
ellipsoids of semiaxes > i’ > ¢ along the three axes. The nu- 3]

merical results ofV; and.V,,, of the prisms andv of ellipsoids
of semiaxes:, b, andc along thec axis are listed in Tables I-lI
as functions of the longitudinal and transverse dimension ratio$!4]
c¢/(ab)/? anda/b. The general formulas in Section Il are sim- 15]
plified or approximated in Section Il for three special cases 01[
1) b > (ca)/?;2) b < (ca)'/?; and 3)a = b and for their  [16]
limits of high longitudinal dimension ratio. For prisms, case 1)
includesNy and N,,, atx = oco. The numerical results oV,
N,,, andN for cases 1) and 2) as functions of longitudinal di-
mension ratiaz/a are listed in Table IV [results of case 3) are
included in Tables I-I11]. In Figs. 1-3, results of special and limit [18]
cases are compared with more general ones, so that the condi-
tions for using simplified formulas may be found quantitatively. [19]

For applying results of ellipsoids and cylinders to prisms, the
proper longitudinal dimension ratio should be defined from thqzo]
midplane area as (18) and (28).

In general, the calculated/; and v, for x = 0 can be
used for weakly magnetic materials (paramagnetic and diamaéz-l]
netic) and ferromagnetic materials at saturation. For other cases
with greatery, Ny ., may be approximately estimated using [22]
Figs. 4-6 and (35)—(39) with a maximum error on the order of[23]
10%. It should be emphasized that at high longitudinal dimen-=
sion ratioc/(ab)*/2, the values of, x{', that can be regarded
as 0 oo in the point of view of demagnetizing factor increase [24]
roughly in proportion ta:/(ab)/2.

The present results @¥ ; and V,,, of rectangular prisms are [25]
far from being complete as compared with those for cylinders,
and many calculations have to be made in order to obtain moréb]
accurate and complet®¥; ,,, for arbitrary values ofy and di-
mension ratios.

(17]

(27]
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