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Demagnetizing Factors for Cylinders 
Du-Xing Chen, James A. Brug, Member, IEEE, and Ronald B. Goldfarb, Senior Member, IEEE 

Abstract-Fluxmetric (ballistic) and magnetometric demag- 
netizing factors Nf and N ,  for cylinders as functions of suscep- 
tibility x and the ratio y of length to diameter have been eval- 
uated. Using a one-dimensional model when y 2 10, Nf was 
calculated for - 1 5 x < Q) and N,,, was calculated for x + 00. 

Using a two-dimensional model when 0.01 5 y 5 50, an im- 
portant range for magnetometer measurements, N ,  and Nf were 
calculated for -1  5 x < 00. Demagnetizing factors for x < 0 
are applicable to superconductors. For x = 0, suitable for 
weakly magnetic or saturated ferromagnetic materials, Nf and 
N,,, were computed exactly using inductance formulas. 

I. INTRODUCTION 
HE study of demagnetizing factors for ellipsoids and T their degenerate forms (spheres, infinite plates, infi- 

nite cylinders) dates from the work of Poisson [ 11 and was 
elaborated upon by Thomson [2], Evans and Smith [3], 
and Maxwell [4]. Experimental investigations on finite 
right circular cylinders began in the 1870’s, when ballistic 
galvanometers were first used in magnetic measurements 
of iron [5], [6]. The literature distinguishes between 
“magnetometric” and “fluxmetric” (or “ballistic”) de- 
magnetizing factors N ,  and Nf [7]. N ,  refers to an average 
of magnetization over the entire specimen and is appro- 
priate for magnetometer measurements of small samples. 
Nf refers to an average of magnetization at the midplane 
of the sample and is appropriate for measurements made 
with short search coils. Values of the demagnetizing fac- 
tor were deduced from the shearing of the magnetic hys- 
teresis loop [8], a procedure originally developed by Lord 
Rayleigh for ellipsoids [9], or by measuring the magnet- 
ization and the field at the cylinder’s side [ 101. Factors 
for cylinders of several aspect ratios were published [7], 
[8], [ l l ] ,  [12]. By the 1900’s, it was apparent that the 
values of the factors depended on the susceptibility x of 
the material [13]-[15]. 

Although it has been criticized from a pedagogical point 
of view [16], [17], the use of fictitious magnetic poles to 
calculate demagnetizing fields has been universal. The 
first theoretical treatment of magnetic pole distributions 
in finite cylinders was by Green [18]. An early model to 
attempt to explain experimental data considered point 
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magnetic poles at each end of a cylinder [ 191. This sim- 
plistic model could be used only for long uniformly mag- 
netized cylinders, and the results deviated significantly 
from experimental data on ferromagnetic samples. During 
the 1920’s and 1930’s, there were several theoretical pa- 
pers on Nf for material with constant susceptibility x. The 
results were given as functions of x and the length-to- 
diameter ratio y. These used one-dimensional models with 
approximations as needed to suit the computational tech- 
niques of the time. The first systematic theoretical cal- 
culation of N’ for the high susceptibility case was done by 
Wurschmidt [20], [21]. He calculated Nf of cylinders 
using a one-dimensional model in which the cylinder had 
side surface poles and point end poles. He used Taylor 
expansions for the magnetization and the demagnetizing 
field at the midplane. The calculation was complicated, 
and he completed it only for the case y = 50 and x --+ W. 
For the y and x dependence of Nf, he gave qualitative 
results using the first few terms of the expansion. A sim- 
ilar approach with simpler expressions was used by Neu- 
mann and Warmuth [22], who calculated Nf for x + 00 

a n d y  2 10. 
To obtain the susceptibility dependence of Nf, Stablein 

and Schlechtweg [23] used a quadratic approximation and 
two linear differential equations. The model was im- 
proved by substituting uniform end-surface poles for point 
end poles. Their results included 30 values of Nf for 10 
I y 5 500 and 12.56 I x c W. An extension of the y 
region to 0 was achieved by Warmuth [24]-[26], who fit- 
ted existing data and extrapolated graphically using the 
demagnetizing factor N of ellipsoids as a reference. The 
values of Nf calculated from the one-dimensional models 
were consistent with the data of ballistic measurements 
on soft magnetic materials. Bozorth and Chapin [27] com- 
piled the results, which were later plotted in Bozorth’s 
book [28]. 

To obtain axial demagnetizing factors more accurately, 
especially for short cylinders, two-dimensional calcula- 
tions are needed. The simplest case is x = 0, where N ,  
and Nf as functions of y can be derived analytically. The 
approximation x = 0 applies to diamagnets, paramagnets, 
and saturated ferromagnets. N,,, for 25 values of y from 
0.2 to 1000 were obtained accurately to four significant 
figures by Brown [29] from a calculation of self-induc- 
tance [30] and listed as a table in Brown’s book [31]. 
Crabtree [32] obtained the same values for the average 
demagnetizing factor by integration of the local field over 
the cylindrical volume. Moskowitz et al. extended 
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Brown’s method to cylinders of polygonal cross section 
[33], and KaczCr and Klem extended it to hollow cylin- 
ders [34]. Nf for x = 0 was calculated exactly by Joseph 
[35]. Approximate values for N ,  and Nf for x = 0, ac- 
curate for large y, were calculated by Vallabh Sharma 
using uniformly magnetized volume elements [36]. Sato 
and Ishii [37] obtained a simple expression to approxi- 
mate N ,  for x = 0. Chen and Li [38], [39] obtained Nf 
for x = 0 using magnetostatic potential calculations. 

The susceptibilities x = - 1 and x -+ 00 correspond to 
perfectly diamagnetic and ideally soft ferromagnetic ma- 
terials, respectively. N ,  and Nf for these susceptibilities 
were first treated by Taylor for perfectly conducting cyl- 
inders [40], [41]. He developed a method introduced by 
Smythe that expressed charge densities on the side and 
ends in terms of a set of orthogonal polynomials, and ex- 
panded the electrostatic potential at the cylinder center 
[42]-[44]. Taylor calculated electric and magnetic polar- 
izabilities for conducting cylinders for 0.25 I y 5 4 in 
both the longitudinal and transverse directions. N,(m) can 
be deduced from his electric polarizability results because 
of the analogy between electrostatics and magnetostatics. 
Because his calculation for magnetic polarizability was 
for a uniform quasi-static but nonpenetrating applied field, 
N,( - 1) can also be deduced from his results. According 
to Taylor, his convergence error was less than 0.1 % for 
the longitudinal direction. 

Using a similar approach with simpler base functions, 
Templeton et al. calculated axial Nf for x -+ 03 for 0.05 
I y I 250 [45], [46]. The fact that the side and end- 
pole densities have basically a 6- ’13 dependence, where 
6 is the distance from the corner, was used to construct 
the set of polynomials. To estimate their error, Templeton 
and Arrott calculated the root-mean-square deviation of 
the normalized potential from 0 and found it to be less 
than 0.3 1 % [45]. Compared to an approximate formula 
with 8 adjustable parameters, the deviations of their 12 
computed Nf(oo) values were less than 0.25 %. The work 
was based on their earlier magnetostatic analysis of the 
magnetization process in soft ferromagnetic cylinders with 
constant end-pole densities [47], [48]. The details of the 
calculation were published by Aharoni. who also calcu- 
lated the self-energy of cylinders [49], and more gener- 
ally, cylinders with nonuniform magnetization [50]. 

For susceptibilities other than 0, - 1, and 00, different 
techniques have been used. Archer and Guancial [5 11 and 
Fawzi et al. [52] calculated the distribution of magneti- 
zation and magnetic field in long cylinders with large sus- 
ceptibilities using volume and boundary integral equa- 
tions. Using experimental resistance network analogs, 
Okoshi [53] obtained Nf for x -, 00, and Yamamoto and 
Yamada [54] obtained Nf and N,,, for large x. 

Several papers have treated demagnetizing factors at 
points. Joseph and Schlomann [55] solved for local de- 
magnetizing factors in uniformly magnetized cylinders 
and used a series expansion to account for nonuniform 
magnetization. Kraus [56] determined the complete local 
demagnetizing tensor for uniformly magnetized cylin- 

ders. Brug and Wolf [57] calculated the magnetization 
distribution in disks and obtained the local demagnetizing 
factor for materials that undergo phase transitions. 

In Zijlstra’s book [58], Nf and N ,  are plotted. These 
types of graphs and tables appear in other books on mag- 
netism and magnetic materials, and they are widely used, 
sometimes inappropriately, in magnetic measurements of 
ferromagnetic, ferrimagnetic, weakly magnetic, and su- 
perconducting materials. However, there remain some 
problems. For x = 0, the most accurate case, the number 
of y values for N ,  and Nf is insufficient for accurate in- 
terpolation. For x # 0, almost all books give results ob- 
tained before 1950, and there are no data for x < 0. For 
long cylinders (y > lo),  there is a lack of data on the x 
dependence of Nf, and there are no data on N,. For short 
cylinders (y < lo), there are even less data, and those 
that exist have large errors because they were obtained by 
extrapolation. In summary, there is no complete picture 
for the y and x dependence of Nf and N,. 

In this paper, we calculate Nf and N ,  for a complete 
range of y and x. Susceptibility x is traditionally assumed 
to be constant in the material and is therefore defined as 
M / H ,  where M is the magnetic moment per unit volume 
and H is the internal magnetic field. For the case x = 0, 
in which the magnetization is uniform, we give 61 exact 
inductance calculations of N ,  and Nf for lop5 I y 5 lo3. 
For x # 0, more elaborate methods are used. For y > 
10, the variation of magnetization across the radius of the 
cylinder is negligible at the midplane, and we calculate 
Nf as a function of y and x (- 1 I x < 00) based on the 
one-dimensional model of Stablein and Schlechtweg [23]. 
Unlike them, we use Taylor expansions for M ( z ) ,  calcu- 
late the demagnetizing field H d ( z )  directly at 25 points 
along the axis, and obtain more accurate results. The 
model is also applicable to N ,  for x -, 00. For 0.01 I y 
I 50, a two-dimensional finite element method is used 
that takes into account the variation of magnetic pole den- 
sity along the side and ends of the cylinder. Values of N ,  
and Nf are given for -1 I x < 00. 

11. FLUXMETRIC AND MAGNETOMETRIC DEMAGNETIZING 
FACTORS 

The demagnetizing correction is nontrivial for samples 
in open magnetic circuits. An exact correction can be ob- 
tained only for ellipsoids [4], [59], [60], where both the 
magnetization M and the demagnetizing field Hd are uni- 
form under a uniform applied field H,. If the three prin- 
cipal ellipsoid axes coincide with the x ,  y ,  and z axes, the 
internal field is 

H = H ,  + Hd = H, - N M ,  (1) 

where N is the demagnetizing tensor, 
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with 

N, + N,, + Nz = 1. (2b) 
If the applied field is along one of the principal axes, we 
have 

H = Ha + Hd = H ,  - N M ,  (3) 
where N is called the demagnetizing factor. In SI units, 0 
5 N I 1. In cylindrical samples, which are commonly 
used in magnetic measurements, the demagnetizing field 
is not uniform, and two kinds of susceptibility-dependent 
demagnetizing factors are defined. 

If the sample is located in a uniform applied field Ha 
along its axis, the fluxmetric (or ballistic) demagnetizing 
factor Nf is defined as the ratio of the average demagne- 
tizing field to the average magnetization at the midplane 
perpendicular to the axis. The magnetometric demagne- 
tizing factor N ,  is defined as the ratio of the average de- 
magnetizing field to the average magnetization of the en- 
tire sample [58]: 

(4) 

Nf and N ,  are functions of the ratio y of cylinder length 
to diameter and the susceptibility x of the material. For 
ferromagnetic or ferrimagnetic materials, this x should be 
regarded as an effective x ,  similar to the differential sus- 
ceptibility dM/dH at the corresponding magnetic state. 
In [58], the definition of N ,  is limited to x = 0. 

111. N ,  AND Nf FOR x = 0 DETERMINED BY 
INDUCTANCE CALCULATIONS 

Brown [29] showed how N ,  could be determined using 
a self-inductance calculation in which a uniformly mag- 
netized cylinder was modeled as a solenoid. In fact, both 
N ,  and Nf may be calculated using the mutual inductance 
of two model solenoids of the same diameter. N ,  is ob- 
tained when the solenoids have the same length, and the 
problem reduces to the self-inductance calculation. Nf is 
obtained when the length of one of the model solenoids 
approaches 0, and the problem is that of the mutual in- 
ductance of a solenoid and a single-turn loop located at 
its midplane. In this section we calculate exact values of 
N ,  and Nffor x = 0 and a wide range of y. 

A. Formulas for Inductance 

An exact formula for the self-inductance L, of a thin 
solenoid of length 21, radius a, and number of turns n is 
[611 

* [12F(k,) + (a2 - 12)E(k,)] - a 3 } ,  (6) 

where F(k,) and E(k,) are the complete elliptic integrals 
of the first and second kind of modulus k,, which is de- 
fined by 

(7) 
and po is the permeability of vacuum. 

An exact formula for the mutual inductance L, of the 
same thin solenoid and a coaxial single-turn loop of the 
same radius at its midplane is [62] 

(8) 

(9) 

Cohen [63] derived an exact general formula for the 
mutual inductance of two concentric coaxial thin sole- 
noids (denoted by subscripts 1 and 2). We have used it 
successfully for these calculations, as an alternative to (6) 
and (8), with a2 = a l ,  in the limits l2 = I ,  (for N,) and l2 
-+ 0 (for N f ) .  

B. Relationship between N ,  and L,, Nf and L, 
The flux density B in a magnetic material is related to 

the internal field H and the magnetization M :  B = pO(H 
+ M ) ,  where H is, in general, related to the applied and 
demagnetizing fields as defined for ellipsoids in (1). Thus 
B = po(Ha + Hd + M ) .  Following Brown [29], we define 
B' as the Amperian flux density: 

k: = a 2 / ( a 2  + Z 2 ) ,  

Lm = (pOna/krn> [F(krn) - E(km)I, 

k i  = 4a2/(4a2 + 1 2 ) .  

where the modulus k, is defined by 

B' = B - poHa = po(Hd + M ) .  (10) 

When x = 0, a cylinder in an axial field has a uniform 
magnetization M .  An ideal thin solenoid carrying current 
I through n turns over a length 21 is equivalent, with re- 
spect to the B' field, to a longitudinally magnetized cyl- 
inder coincident with it [29]. Thus the cylinder can be 
modeled as a solenoid with the same M ,  and its average 
Hd can be obtained from M and average B' using (10). 
We take the solenoid as having one turn (n = l ) ,  so 

(1 1) M = I/(2l). 

For the entire volume, we can obtain the average B' 
from the average flux 9 in the solenoid as 

( B '  ) = +/(m2). ( 1 2 4  

Thus the average demagnetizing field can be obtained 
from (10) and (12a) as 

( H d )  = + / ( p ~ n a * )  - M .  (1 3 4  

L, = +/I .  (144 

The definition of self-inductance is 

From ( l l ) ,  (13a), and (14a), we obtain the final expres- 
sion forthe magnetometric demagnetizing factor: 

N ,  - ( H d ) / M  = 1 - 2&/(pona2). (15) 

For N f ,  we obtain the average B' at the midplane from 
the flux a0 in the one-turn secondary loop of radius a: 

( B ' )  = +0/(na2). ( 12b) 
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The average demagnetizing field is 

( H d )  = *o/ (pona2)  - M. (13b) 

L, = *o/z. (14b) 

The definition of mutual inductance is 

The final expression for the fluxmetric demagnetizing fac- 
tor is 

Nf - (&)/A4 = 1 - 21L,/(po~a*). (16) 

Equations (15) and (16) have been derived, by direct in- 
tegration rather than inductance formulas,' by Joseph [35]. 

C. Results 
Values of N,(x = 0) and Nf(x = 0) as functions of y 

(= Z/a) computed using (6), (15), (8), and (16) are given 
in Table I. For N,, the data agree with those given by 
Brown [29], [31]. For Nf, the data agree with those ob- 
tained by Joseph [35] and by Chen and Li [38]. In Table 
I we also give N for ellipsoids of revolution with longi- 
tudinal axes 21 and transverse axes 2a calculated from 
well-known formulas [4], [59], [60]. 

IV. ONE-DIMENSIONAL MODEL FOR LONG CYLINDERS 
A. Calculation of M 

Assume that a cylinder of length 21 and diameter 2a is 
located in a uniform applied field Ha along the z axis, as 
shown in Fig. 1. The material has constant susceptibility 
x, which leads to 

B = po(M + H) = poM(1 + l / x )  (17) 
at any point inside the cylinder. Since V * B = 0, the 
volume magnetic pole density, proportional to V - M, 
equals 0 inside the cylinder; that is, all poles are on the 
surface. <.'' 

We further assume for this one-dimensional model that 
M,, the z component of M, is uniform in each cross sec- 
tion of the cylinder, and can be expressed by a scalar 
quantity as 

n 

M(z) = M,(z) = c M2,(Z/O2', (18) 

, n)  are constants. (B ,  Ha,  and 

r = O  

where M2,(i  = 0, 1, 
Hd can also be written as scalar quantities.) 

. 

For a section of cylinder of length dz at z ,  

$ M ds  = na2dM(z) + 2aaMr(z)dz = 0, (19a) 

because $ M - ds  = V * M d v  and V * M = 0. M r ( z )  
is the radial component of M at the side surface. Substi- 
tuting a ( z )  = p o M r ( z )  gives, on the side surface, the sur- 
face magnetic pole density 

U ( Z )  = -;poa dM(z) /dz  = - ( p o a / l )  

n 

i M 2 1 ( ~ / l ) 2 r - ' .  

(19b) 

TABLE 1 
EXACT FLUXMETRIC AND MAGNETOMETRIC DEMAGNETIZING FACTORS Nf 

AND N,,, FOR x = 0" 

Y N A O )  Nf (0) N 
~~ 

0.00001 
0.o001 
0.001 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 
0.34 
0.36 
0.38 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.90 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.6 
1.8 
2.0 
2.5 
3 .O 
3.5 
4 
5 
6 
7 
8 
9 
10 
20 
50 
100 
200 
500 
lo00 

0.9999 
0.9994 
0.9950 
0.9650 
0.9389 
0.9161 
0.8954 
0.8764 
0.8586 
0.8419 
0.8261 
0.8110 
0.7967 
0.7698 
0.7450 
0.7219 
0.7004 
0.6802 
0.661 1 
0.6432 
0.6262 
0.6101 
0.5947 
0.5801 
0.5662 
0.5530 
0.5403 
0.5281 
0.4999 
0.4745 
0.4514 
0.4303 
0.41 10 
0.3933 
0.3770 
0.3619 
0.3349 
0.3116 
0.291 1 
0.2731 
0.2572 
0.2429 
0.2186 
0.1986 
0.1819 
0.1501 
0.1278 
0.1112 
0.09835 
0.07991 
0.06728 
0.05 809 
0.05110 
0.04562 
0.041 19 
0.0209 1 
0.00843 8 
0.004232 
0.002119 
0.0008483 
0.0004243 

0.9999 
0.9993 
0.9949 
0.9638 
0.9364 
0.9124 
0.8905 
0.8703 
0.8513 
0.8333 
0.8163 
0.8001 
0.7845 
0.7553 
0.7281 
0.7027 
0.6789 
0.6565 
0.6352 
0.6151 
0.5960 
0.5778 
0.5604 
0.5438 
0.5279 
0.5127 
0.4982 
0.4842 
0.4516 
0.4221 
0.3952 
0.3705 
0.3480 
0.3273 
0.3082 
0.2905 
0.2592 
0.2322 
0.2089 
0.1886 
0.1710 
0.1555 
0.1298 
0.1096 
0.09351 
0.06544 
0.04799 
0.03653 
0.02865 
0.01889 
0.01334 
0.009904 
0.007635 
O.Oo6061 
0.004927 
0.001245 
0.0001999 
0.00004999 
O.oooO1250 
0.00000200 
0.00000050 

1 .m 
0.9998 
0.9984 
0.9845 
0.9694 
0.9546 
0.9402 
0.9262 
0.9125 
0.8991 
0.8860 
0.8733 
0.8608 
0.8367 
0.8137 
0.7917 
0.7706 
0.7505 
0.7312 
0.7126 
0.6948 
0.6778 
0.6614 
0.6456 
0.6304 
0.6158 
0.6017 
0.5b82 
0.5563 
0.5272 
0.5005 
0.4758 
0.4531 
0.4321 
0.4126 
0.3944 
0.3618 
0.3333 
0.3083 
0.2861 
0.2664 
0.2488 
0.2187 
0.1941 
0.1736 
0.1351 
0.1087 
0.08965 
0.0754 1 
0.05 582 
0.04323 
0.03461 
0.02842 
0.02382 
0.02029 
0.006749 
0.001443 
0.0004299 
0.0001248 
0.00002363 
O.OOOOO6601 

'Factors were calculated as functions of y using inductance formulas. 
For comparison, N is the demagnetizing factor for ellipsoids. 

On the end planes of the cylinder, we have uniform sur- 
face magnetic pole densities: 

n 

r = O  
U(* 1 )  = k p o ~ ( l )  = 5 PO ,E ~ 2 i .  (20) 

ndilley
Comment on Text
I think they mean gamma = L/(2a)
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z 
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X uy -'-?--'- -e I H a  
I 

Fig. 1. Cylinder geometry and coordinate system. 

Although the side surface magnetic pole density is a 
function of z only, our assumptions of both uniform M, 
and uniform a( k I) are, in fact, contradictory for constant 
x;  a uniform a +_ 1) and the side pole density would pro- 
duce a nonuniform Hdzr the z component of the demag- 
netizing field, which would lead to a nonuniform M,.  
However, if y (= l / a )  is large ( 2  lo),  and if we consider 
only Nf, for which the middle part of the cylinder is more 
impoltant , this one-dimensional model is a good approx- 
imation. 

B. Calculation of Nf and N,,, for Long Cylinders 
(7 1 10) 

Hd is a function of z :  
In this model, in a given Ha,  the demagnetizing field 

H d ( z )  = Hdl(z) + Hd2(z), (21) 
where Hdl and Hd2 are the demagnetizing fields produced 
by the side poles and the end poles, respectively. 

At a point z = {on the z axis, 
+I 

HdI({) = -a(2/h)-' fl(z>(z - 
- I  

[ ( z  - {)2 + a2Ip3/* dz 

where 
P +I 

where 

F2(33 = ;(I + {)[(l + { ) 2  + t12]-1/2 

+ i ( l  - { ) [ ( t  - {)2 + a2]- ' /2 - 1. (24b) 

From (3), and considering the z dependence of H and 

(25) 

Rewriting the variable {in H d l ,  F I I ,  H d 2 ,  and F2 as z ,  and 
substituting (22a) and (24a) into (21), and (18) and (21) 
into (25), we obtain 

H d ,  we have 

H ~ ( z )  - M(z)/x = -Ha.  

n 

c [F,,(z) + F2(z) - (z/l)21/XlM21 = -Ha. (26) 
r = O  

This is a general equation relating the expansion coeffi- 
cients M2r of magnetization, the applied field H,, the sus- 
ceptibility x ,  and the position z for a cylinder of length 21 
and diameter 2a. In our problem, H,, I, a, and x are given, 
and the n + 1 coefficients M,, are unknown. We can 
choose n + 1 positions, z = zO, zI, * * * , z,, and get a 
set of n + 1 linear equations. M2, (i = 0, 1, - * , n )  are 
then obtained by solving these equations simultaneously. 
Nf and N,,, can be obtained according to (4), (5), and (25) 
as 

Nf = -Hd(o)/MO = Ha/MO - l /X, (27) 

N ,  = - ( H d ) / ( M )  = H a / ( M )  - l / x ,  (28) 

where the ( ) brackets denote the volume average, and 
n 

( M )  = I - '  M(z) dz = c M2,/(2i + 1). (29) 

In principle, the larger the number of terms in the ex- 
pansion equation (26), the more accurate are the results. 
However, if n is too large, the computed function M ( z )  
oscillates. For computation, n = 12 is a practical choice, 
and 

s: 1 = O  

z, = if / l2,  (30) 

H, = 1, (314 

r c = !  (3 1b) 

Table I1 and Fig. 2(a) and 2(b) give the calculated Nf 
as functions of y and 2 for -1 I x I lo9. When x + 

03, Hd is uniform in the cylinder (Hd  = - H a ) ,  and M 
close to the ends is very small. As a result, values of N,( x 
-+ 00) obtained from this model are expected to be fairly 
accurate due to rather small end effects. Similar data were 
presented in 1641. Fig. 3 gives N ,  and Nf as functions of 
y when x = 0.001 and lo9. The demagnetizing factors N 
for ellipsoids (dashed curve) are located between N,,, and 
Nf for x -+ 00. 

(i = 0,  1, * * * 9 121, 



3606 IEEE TRANSACTIONS ON MAGNETICS, VOL. 21, NO. 4, JULY 1991 

TABLE I1 
N, AS FUNCTION OF y A N D  x CALCULATED USING THE ONE-DIMENSIONAL MODEL' 

Y 1000 2000 10 20 50 100 200 500 

N/ 
X (IO-)) ( IO- ) )   IO-^) (IO-') (IO-') (10-7 (IO-') (IO-') 

- 1  3.965 1.130 1.900 4.776 1.196 1.917 4.796 1.199 
-0.8 4.239 1.162 1.931 4.852 1.215 1.945 4.865 1.216 
-0.4 4.642 1.210 1.972 4.944 1.237 1.980 4.950 1.237 

0 4.963 1.248 1.999 5.000 1.250 2.000 5.000 1.250 
0. I 5.037 1.256 2.005 5.011 1.252 2.004 5.010 1.252 
0.2 5.108 1.265 2.011 5.021 1.255 2.007 5.018 1.255 
0.5 5.315 1.289 2.026 5.047 1.260 2.016 5.040 1.260 
1 5.639 1.328 2.049 5.082 1.268 2.027 5.067 1.267 
2 6.231 1.401 2.089 5.135 1.277 2.040 5.100 1.275 
5 7.695 1.616 2.191 5.247 1.293 2.058 5.143 1.286 
10 9.377 1.967 2.352 5.394 1.308 2.071 5.168 1.292 
20 11.23 2.565 2.688 5.664 1.332 2.083 5.187 1.296 
so 13.21 3.600 3.803 6.494 1.395 2.106 5.211 1.299 
100 14.14 4.294 5.448 8.132 1.500 2.141 5.238 1.302 
200 14.68 4.776 7.497 11.77 1.734 2.210 5.288 1.305 
500 15.03 5.126 9.800 19.91 2.661 2.414 5.438 1.316 

IO3 15.15 5.255 10.90 26.32 4.221 2.808 5.684 1.333 
2 X IO3 15.21 5.322 11.53 31.12 6.275 3.889 6.186 1.369 
5 X IO3 15.25 5.363 11.95 34.78 8.642 7.570 8.223 1.474 

IO4 15.26 5.377 12.09 36.16 9.779 11.68 13.12 1.669 
2 X IO4 15.27 5.384 12.16 36.88 10.44 15.47 22.71 2.237 
5 X IO4 15.27 5.388 12.21 37.33 10.87 18.77 38.36 4.620 

IO5 15.27 5.390 12.22 37.48 11.02 20.11 47.73 7.811 
2 X IO5 15.28 5.390 12.23 37.55 11.10 20.83 53.77 11.10 
5 X IO5 15.28 5.391 12.23 37.60 11.14 21.28 57.94 14.19 

IO6 15.28 5.391 12.24 37.62 11.16 21.44 59.43 15.50 
IO' 15.28 5.391 12.24 37.63 11.17 21.58 60.82 16.83 
IO9 15.28 5.391 12.24 37.63 11.17 21.59 60.98 16.99 
rn 15.30 12.11 37.20 

"The row for x = 0 is comparable to data for Nf(0) in Table I .  The last row gives A',(=) calculated by 
Templeton and Arrott [45]. 

I" 10 100 
Y Y 

(a) (b) 

Fig. 2. Calculated Nffrom the one-dimensional model. (a) For 10 5 y < 200, the curves from top to bottom are for x = OD, 
1000, 300, 100, 30, 10, 3, 1, 0, and - 1. (b) For 10 5 y < 1000, the curves from top to bottom are for x = OD, IO5, 3 X IO4, 
lo4, 3 x lo3, lo3, 300, 100, 0, and - 1 .  
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10 100 1000 
Y 

Fig. 3 .  N,,, and N,for 10 5 y < 1000. The solid curves from top to bottom 
are N,(x = O ) ,  y,(x --* m), N,(x  -t a), and N,(x = 0). The dashed 
curve is N for ellipsoids. 

Earlier results for y > 10 exist for Nf but not for N,. 
Wurschmidt’s result for y = 50 and x + 00 is 3.4% 
smaller than our result [20], [21]. Neumann and War- 
muth’s results deviate from our results by 1.5%, O.O%,  
-3.4%, -5.3%, and -8.6% f o r y  = 10, 20, 50, 100, 
and 1000 [22]. For x -+ 00,  the maximum deviation of 
the results of Stablein and Schlechtweg from our results 
is 3 % ;  but for their smallest x (12.56), the maximum dif- 
ference is above 30% 1231. Templeton and Arrott’s [45] 
results for x + 00 (Table 11) are the most accurate, and 
our data agree within 1.1 % . Compared with the exact re- 
sults for x = 0 in Table I, the data in Table I1 have errors 
o f0 .7%,  0.2%, and0.0% f o r y  = 10, 20, a n d y  L 50. 

v. TWO-DIMENSIONAL MODEL FOR SHORT CYLINDERS 
A .  Calculation of Surface Pole Density 

The magnetization, in general, varies throughout the 
cylinder in both the radial and axial directions. A calcu- 
lation of demagnetizing factors for a short cylinder (y < 
10) must take this variation into account, especially near 
the comers, where the magnetization sharply diverges for 
susceptibilities far from 0. As in the one-dimensional 
model, we assume that the cylinder consists of material 
with constant x, so the demagnetizing fields are com- 
pletely specified by the surface pole density. 

To obtain the distribution of poles on the surface for a 
specified susceptibility, we divide the surface of the cyl- 
inder into a set of nonoverlapping elements of uniform 
pole density. With the cylindrical symmetry there is no 
azimuthal dependence of the pole distribution, and we are 
therefore able to use elements in the shape of rings about 
the central axis. We solve the set of equations that de- 
scribes the interaction between these rings of surface poles 

and use the resulting distribution to obtain the magneto- 
metric and fluxmetric demagnetizing factors. 

The method of dividing the surface of a magnetized 
body into a set of interacting elements of uniform pole 
density has been used before for the calculation of the 
magnetic fields of rectangular bodies. Ruehli and Ellis 
[65] assumed a constant susceptibility, and Normann and 
Mende [66] used a field dependent magnetization with the 
assumption that the volume pole distribution is negligible. 
Both of these studies were interested primarily in the field 
and magnetization distributions rather than the demagne- 
tizing factors. A method that involves dividing the vol- 
ume into uniformly magnetized elements was used by 
Brug and Wolf [57] for the case of thin disks that undergo 
magnetic phase transitions. They used a demagnetizing 
matrix that was derived by Hegedus, Kadar, and Della 
Torre [67], [68] for interacting volume elements in cylin- 
drical geometries. Volume elements have also been used 
by Soinski [69] for rectangular and ring-shaped samples. 
A method of obtaining demagnetizing fields in bodies of 
arbitrary shape was presented by Vallabh Sharma [36] 
using rectangular volume elements. Templeton and Arrott 
[45] used the principle that the magnetic potential is 0 at 
each point on a grid inside a body with infinite suscepti- 
bility. They calculated the demagnetizing factors of cyl- 
inders and bars and later extended this to the case of a 
material that saturates [70]. 

The following method solves for the pole distribution 
at the surface of a cylinder for an arbitrary value of the 
susceptibility. The surface is divided into rings of area 
7~ ( r ;  - r:)  on the end planes of the cylinder and into rings 
of area 2na(z2 - zl)  on the side surface of the cylinder. 
The cylinder diameter is 2a, rl and r2 are the inner and 
outer radii of the end-surface ring, and z ,  and z2 are the 
side-surface ring limits. The z and r components of the 
demagnetizing field at a point i that results from the sur- 
face poles uJ at each ring are given by 

HLz = - c NY a , /p , ,  (324 
J 

where, for example, N !  is a scalar factor that relates the 
surface pole on the j th ring to the r component of the de- 
magnetizing field that it produces at the ith ring. A method 
of calculating these factors is given in the Appendix. 

The interactions between the surface poles at each ring 
is specified using the equation M = x(H, + Hd).  The 
demagnetizing field Hd , given in (32), is written in terms 
of the magnetization at each ring using u j / p o  = n * MJ 
= M i ,  where n is the unit vector outward normal to the 
surface of the ring, and MJ is the magnetization at the jth 
ring. The resulting equations are for the magnetization at 
each point, 
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TABLE 111 
Nf VALUES CALCULATED BY SURFACE AND VOLUME METHODS (NjA AND N,,,) USING 74 SIDE RINGS 

X - 1  0.0001 10000 

Y Nfl Nf$  Nfl Nf,  Nf,. 

0.73312 0.064998 
0.23258 0.23225 0.22912 0.015670 

0.1 0.82568 0.82582 0.78460 0.7846 1 
1 0.23196 0.23195 

10 0.018951 0.0042004 0.0081227 0.0049267 0.016904 0.00099941 

where we have constrained the applied field to be in the 
axial direction. Because only the normal component of M 
is needed at each point, the equations can be rewritten as 

H, = x - ' M i  + c NYML 
J 

(rings on the top end-plane), (34a) 

H, = - x - ' M ;  + N,"M$ 
J 

(rings on the bottom end-plane), (34b) 
o = x - l ~ ~  + C N Y M J ,  

J 

(rings on the side surface). (34c) 

With the surface of the cylinder divided into n rings, there 
will be a set of n simultaneous linear equations. These 
equations are solved for M,, at each ring using matrix in- 
version [7 11.  

The number of rings required to adequately specify the 
surface pole density depends on how rapidly the pole dis- 
tribution varies. For both large susceptibilities and sus- 
ceptibilities near - 1, the pole distribution diverges 
sharply near the corner of the cylinder. To reduce the total 
number of rings, the density of the rings is made roughly 
proportional to the pole density. For the case of infinite 
susceptibility, the pole density near the corner at the end- 
plane is approximated as [45] 

uo(r, * 1 )  * [ ( 1  - r / a ) - 1 / 3  - (1 + (35) 

We let the width of the rings A r be inversely proportional 
to uo near the comer of the cylinder, which gives 

A r  = {ao + a l [ ( l  - r / ~ ) - " ~  - (1 + r / ~ ) - ' / ~ ] } - ' .  

(36) 
A similar equation determines the width of the rings on 
the side surface of the cylinder. The adjustable parameters 
a.  and a I  are determined by the total number of rings used 
in the calculation. A total of 148 rings was used, 37 on 
each end-plane and 74 on the side of the cylinder. For y 
= 10, 20, and 50, the calculations were repeated with 8 
end-plane rings and 132 side rings. 

B. Calculation of N ,  and Nj  
After obtaining the surface pole distribution, there are 

two ways to calculate the demagnetizing factors, based on 
the two equations 

(37a) Nf,m = - ( H d ) / < M , >  = H , / ( M , )  - x - I ,  

where Hd and M, are averaged over the midplane for Nf 
and over the volume for N,. 

For the first method, using (37a), N f , ,  is calculated from 
( M,). We have $ M ds = 0 for a material with constant 
susceptibility. Therefore, for each transverse cross sec- 
tion of the cylinder, the average M, multiplied by the 
cross-sectional area S equals the surface integration of M,, 
over the cylinder surface above the cross section. In the 
case of N f ,  the cross section is taken to be the midplane. 
We have, from (37a), 

(38) 
where SI is the surface consisting of the top half of the 
cylinder, sj is the area of thejth ring, and the sum is over 
the rings on the top end-plane and on the side surface 
above the midplane. To calculate N,, a series of cross 
sections corresponding to each side-surface ring is con- 
sidered, and the volume-averaged M, is calculated from a 
weighted average over these cross sections. 

The second method, using (37b), requires a calculation 
of ( Hd ) . We use (32a), with i denoting an interior point 
of the cylinder. Again, the average is taken over the mid- 
plane for Nf and over the volume for N,. 

Since the first method involves surface flux calcula- 
tions, while the second involves interior field calcula- 
tions, we refer to them as the surface and the volume 
methods, respectively. Table I11 gives some examples of 
the results obtained from both methods. We see from this 
table that the results do not agree, especially for large y 
or large x. The differences are even larger for N,. The 
source of the disagreement is a systematic error that is due 
almost entirely to the finite number of elements with which 
the surface pole density is calculated. 

The field produced by a magnetic pole is very sensitive 
to the distance r between the pole and the point at which 
the field is considered, with an r P 2  dependence. In the 
two-dimensional model, the division of the surface of the 
cylinder into rings will produce a discretization error be- 
cause Hd is calculated in the center of a region of Uniform 
pole density. This error is mainly due to the division of 
the side surface; at the center of each ring on this surface, 
the normal component of Hd is produced by poles on the 
ring itself with significant contribution from poles on ad- 
jacent rings. For the end planes, the poles on the same 
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0 

-0.5 

1 0 
r / a  

Fig. 4 .  Variation of normalized M,, on the surface of a cylinder with y = 
1 for selected values of susceptibility. On the left half of the figure, cor- 
responding to the cylinder side, the curves from top to bottom are for x = 
03,  - 1 ,  1, -0.5, and 0. On the right half, corresponding to the cylinder 
end, the curves are for x = 00, 1 ,  0, -0.5, and - 1 .  

surface do not contribute to the normal component of H d ,  
except for the pole at the point being considered. A region 
of uniform pole density adjacent to the point does not pro- 
duce a discretization error. 

Fig. 4 gives the surface pole distribution of a cylinder 
with y = 1 for x = -1, -0.5, 0.0001, 1, and 10 000, 
calculated with the two-dimensional model. The normal- 
ized pole density is expressed as M ,  / I M,, ( r  = 0) I .  There- 
fore, all the curves have the actual sign of the pole density 
when H,  is positive. The curves shown are for the top half 
of the cylinder with z > 0; they are odd functions of z .  
As can be seen from the figure, when x --$ 00, the side 
poles are broadly distributed with a larger density, and 
this should give a relatively large error. The side poles 
are narrowly distributed for x < 0, giving a small error. 
For the cases of small or zero side-pole density (low or 
zero x ) ,  the error will be small or zero. The error becomes 
larger as y increases because the size of the rings on the 
side surface also increases. The relative effect of the end 
poles increases and the error decreases as y decreases. 

This systematic error is correctable if it is not too large. 
For the surface and volume methods, we write the de- 
magnetizing factors as Ns and N,,, and write ( M , )  and 
( H d )  as M,,  and Hdr,, respectively. For simplicity, the 
corrected quantities are written as N ,  M,,  and H d .  Ha is 
arbitrarily set equal to 1. From (37), we have 

(394 N = M - '  - - I  
zs  x , 

N,'  = - x ( H i ;  + l), 

N - '  = - x ( H d l  + 1). 

(39c) 

(394  

We assume that the error in the surface pole density cal- 
culation is not too large so that 

H d u / H d  M z s / M z .  (39e) 

Thus we have from (39) 

NJl + N x ) / [ N ( l  + Nvx)l = (1 + N x ) / ( 1  + N , X ) .  

(404  

Solving (40a) for N gives the interpolation/extrapolation 
equation 

(40b) 

We use (40b) and the results (up to 5 significant digits) 
from the two methods to obtain the final Nf and N,. They 
are presented in Tables IV and V and Figs. 5, 6 ,  and 7. 
The entries in Table I11 provide data for illustrative com- 
putations. Values for y I 10 were obtained with the 74- 
side-ring calculation. The values for y = 20 and 50 are 
from the 132-side-ring calculation, which gives a smaller 
discretization error for these cases. As an example of the 
worst case, Nf for x = 10 000 and y = 20 is 55.46 X 

lop4 when computed with 74 side rings, compared to 
53.85 x lop4 for 132 side rings. 

With the corrected Nf, , we can correct M, and Hd using 
(39b) and (39d) and compare them with M z s  and Hdt, cal- 
culated from (39a) and (39c). We find that, for all Nf and 
N,, the discretization error is less than l o % ,  giving a de- 
magnetizing factor error of < l %. Exceptions are when y 
= 20 and x 2 100 for the 74-side-ring calculation, and 
when y = 50 and x 2 100 or y = 10 and x = 10 000 
for the 132-side-ring calculation. Thus (39e) is rather ac- 
curate in most cases and the interpolation/extrapolation 
approach is valid. 

A comparison can be made with less-general published 
results obtained for specific values of x .  The results agree 
with the exact self-inductance calculations in Table I to 
four significant figures except for N ,  for y > 1 when, in 
the worst case, the error is 0.12%. The two-dimensional 
calculation for N ,  can be compared with N ,  data deduced 
from the work of Taylor [40], [41] as shown in Section 
VI-A. From Taylor's data, we calculate five values each 
of N m ( -  1) and N , ( m )  for 0.25 I y I 4 (Table VI). The 
greatest difference between the two-dimensional results 
and Taylor's method is 0.22% for N,( - 1 )  and 0.17% for 
N ,  (00). For Nf(03) ,  the results are compared with the val- 
ues calculated by Templeton and Arrott [45]. The largest 
deviation is 0.98% at y = 10. 

The results of Nf for y 1 10 can be compared with our 
one-dimensional calculation (Table 11). The deviations of 
the one-dimensional from the two-dimensional results are 
-1.2%, -1.2%, 0.6%, 1.8%, 0 .7%,  and -4.2% f o r y  
= 10 and x = 10 000, 100, 10, 1, 0, and - 1, respec- 
tively. For y = 20 and 50 the maximum deviation reduces 
to 1.2% and 1.9%, respectively. Such deviations are due 
mainly to the approximations made in the one-dimen- 
sional model. 

N = Nr)(1 + N s x ) / ( 1  + N,,x) .  
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TABLE IV 
N, AS FUNCTION OF x A N D  y CALCULATED USING THE TWO-DIMENSIONAL MODEL 

X 10 100 10000 -1 -0.9 -0.7 -0.5 -0.3 0.0001 0.3 1 3 

Y 

0.01 
0.02 
0.03 
0.04 
0.05 
0.07 
0.1 
0.2 
0.3 
0.4 
0.5 
0.7 
1 
1.5 
2 
2.5 
3 
4 
5 
7 

10 
20 
50 

N, 

9781 
9576 
9383 
9201 
9028 
8704 
8265 
7060 
6106 
5309 
4626 
3513 
2319 
1199 
689.6 
449.7 
323.7 
199.1 
137.6 
77.75 
41.38 
11.44 

1.937 

9728 
9513 
9316 
9132 
8957 
863 1 
8188 
6974 
6016 
5223 
4549 
3466 
2323 
1246 
738.4 
487.1 
350.0 
212.3 
144.9 
80.68 
42.47 
11.59 

1.946 

9690 
9453 
9242 
9048 
8865 
8528 
8073 
6840 
5879 
5093 
4436 
3399 
2325 
131 1 
808.3 
543.0 
391.1 
233.8 
157.0 
85.57 
44.28 
11.83 

1.961 

9669 
9418 
9196 
8993 
8803 
8454 
7988 
6738 
5776 
4999 
4353 
335 1 
2325 
1354 
857.3 
584.3 
422.8 
251.5 
165.4 
89.81 
45.84 
12.03 

1.974 

9655 
9393 
9163 
8952 
8756 
8398 
7922 
6659 
5697 
4926 
4292 
3314 
2325 
1385 
894.0 
616.7 
448.6 
266.8 
176.6 
93.67 
47.27 
12.21 

1.984 

9639 9628 
9365 9345 
9125 9097 
8906 8872 
8704 8664 
8334 8285 
7846 7788 
6566 6494 
5605 5535 
4843 4780 
4222 4169 
3273 3242 
2322 2320 
1418 1442 
935.2 965.6 
654.4 683.5 
479.9 505.0 
286.5 303.4 
188.9 199.9 
99.05 104.1 
49.27 51.17 
12.45 12.69 

1.999 2.012 

9610 
9313 
9052 
8817 
8599 
8206 
7693 
6378 
542 1 
4679 
4084 
3193 
2315 
1477 
1013 
731.6 
548.4 
334.8 
221.8 
114.8 
55.41 
13.20 
2.039 

9586 
9268 
8990 
8739 
8508 
8094 
7558 
6214 
5262 
4539 
3968 
3125 
2304 
1520 
1078 
801.5 
616.1 
390.6 
264.8 
139.4 
66.43 
14.61 
2.110 

9562 
9225 
8929 
8663 
8419 
7984 
7425 
6054 
5 109 
4405 
3858 
3060 
2291 
1556 
1138 
871.4 
689.2 
461.1 
327.6 
185.1 
93.25 
19.51 
2.337 

9548 9544 
9195 9191 
8888 8881 
8612 8603 
8359 8349 
7909 7879 
7335 7321 
5945 5929 
5006 4990 
4316 4302 
3784 3773 
3016 3009 
2280 2278 
1578 1581 
1177 1182 
920.8 927.7 
745.0 752.6 
522.5 531.6 
390.1 400.1 
244.2 255.2 
143.1 154.5 
42.96 53.85 

TABLE V 
N ,  AS FUNCTION OF x AND CALCULATED USING THE TWO-DIMENSIONAL MODEL 

X 3 10 100 10000 -1 -0.9 -0.7 -0.5 -0.3 0.0001 0.3 1 

0.01 
0.02 
0.03 
0.04 
0.05 
0.07 
0.1 
0.2 
0.3 
0.4 
0.5 
0.7 
1 
1.5 
2 
2.5 
3 
4 
5 
7 

10 
20 
50 

9780 
9576 
9385 
9205 
9035 
872 1 
8300 
7200 
6393 
5766 
5260 
4488 
3692 
2860 
2339 
1979 
1717 
1358 
1123 
834.0 
601.5 
316.8 
128.4 

9730 
9517 
9323 
9 143 
8974 
8660 
8240 
7135 
6318 
5681 
5167 
4382 
3576 
2744 
2229 
1878 
1623 
1277 
1053 
779.6 
560.7 
293.7 
119.1 

9695 
9464 
9259 
907 1 
8896 
8575 
8149 
7029 
6200 
5550 
5025 
4226 
3410 
2580 
2076 
1737 
1494 
1167 
958.0 
705.2 
505.1 
262.3 
106.4 

9677 
9434 
9220 
9026 
8845 
8516 
8082 
6947 
6108 
545 1 
492 1 
41 14 
3295 
2469 
1973 
1643 
1407 
1094 
894.5 
655.6 
468.0 
241.6 

97.78 

9665 
9413 
9 192 
8993 
8808 
847 1 
8029 
6881 
6035 
5373 
4839 
4029 
3210 
2388 
1898 
1574 
1345 
1040 
848.4 
619.5 
440.9 
226.6 

91.53 

965 1 
9390 
9162 
8955 
8765 
8420 
7968 
6803 
5948 
5282 
4745 
3933 
3116 
2301 
1818 
1501 
1277 
983.1 
798.6 
580.4 
411.5 
210.2 

84.70 

9642 
9373 
9139 
8927 
8733 
8380 
7920 
6741 
5880 
521 1 
4674 
3862 
3047 
2238 
1761 
1449 
1229 
941.8 
762.7 
552.1 
390.1 
198.3 
79.70 

9628 
9347 
9103 
8882 
8680 
8315 
7841 
6637 
5768 
5096 
4558 
3749 
2942 
2 144 
1675 
1370 
1156 
897.0 
707.7 
508.2 
356.6 
179.5 
71.77 

9608 
93 10 
9052 
8819 
8605 
822 1 
7726 
6485 
5604 
4930 
4395 
3596 
2804 
2023 
1567 
1270 
1063 
796.8 
634.1 
447.9 
309.6 
152.5 
60.18 

9589 
9275 
9000 
8754 
8529 
8127 
7609 
6332 
5440 
4768 
4239 
3455 
2682 
1921 
1475 
1184 
981.8 
721.7 
564.1 
386.4 
258.5 
120.9 
46.05 

9577 
925 1 
8967 
8711 
8478 
8062 
7529 
6224 
5327 
4657 
4134 
3363 
2604 
1858 
1418 
1131 
930.2 
671.0 
513.5 
336.2 
210.2 

82.60 

9574 
9247 
8960 
8703 
8469 
8050 
7515 
6207 
5306 
4640 
4118 
3349 
2593 
1850 
141 1 
1124 
922.7 
663.5 
505.8 
328.0 
201.3 
72.91 

VI. DISCUSSION 

A .  Nf,, f o r x  = 0, 00, and -1 

In ellipsoids, a uniform applied field produces a mag- 
netization and a demagnetizing field that are both uni- 
form. In cylinders, the magnetization and the demagne- 
tizing field are both nonuniform except in two cases. For 
x = 0, the magnetization is uniform but the demagnetiz- 
ing field is not. For x + 03, the demagnetizing field is 
uniform (and exactly opposite to the applied field) but the 

magnetization is not. For x = - 1, the nonuniform mag- 
netization and nonuniform demagnetizing field in the cyl- 
inder combine to exactly cancel the applied field so that 
the flux density B = 0. In these three cases, demagnetiz- 
ing factors can be calculated more accurately by introduc- 
ing electromagnetic scalar potentials. Moreover, there are 
some simple relations among N,, Nmy,  and NmZ, the mag- 
netometric demagnetizing factors along the three princi- 
pal orthogonal axes. 

For x = 0, a cylinder has N,,, Nmy,  and N,, that are 
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equivalent to those of a possible ellipsoid of revolution, 
with 

N ,  + Nmy + N,, = 1, (41) 

according to the more general theorem of Brown and Mor- 
rish [72]-[74]. As examples from Table I, cylinders with 
y = 0.22, 0.80, and 1.6 are equivalent to ellipsoids with 
y = 0.30, 0.90, and 1.6. A cylinder with y = 0.9065 is 
equivalent to a sphere ( N  = 0.3333) [36]. A cube is also 
equivalent to a sphere according to the theorem [75]-[77]. 
Experimentally, for weakly magnetic and saturated fer- 
romagnetic materials, these two shape-isotropic geome- 
tries can be used as alternatives to spheres. However, the 
theorem of Brown and Monish on the equivalence of a 
body of arbitrary geometry (including a cylinder) and a 
possible ellipsoid cannot lead to an a priori estimate of 
the value of N , ( x  = 0) except for a body with center 
symmetry, such as a cube. 

For cylinders, the transverse magnetometric demagne- 
tizing factors are 

(42) 

Equations (41) and (42) are valid for N ,  only when x = 
0. For x > 0, the sum is less than 1, while for x < 0, it 
is greater than 1. If Nf is considered, rather than N,,,, the 
sum is always less than 1. 

For a given y, values of N f ( x  -+ 00) and N,(x  -, 03) 
are rather close to N for ellipsoids. We can fit the Nf(03)  
and N ,  (03) versus y data in Table I1 and Figs. 2 and 3 by 
simple equations: 

N ,  = Nmy = i (1  - NmJ.  

N ~ ( x  -+ 03, y) = N ( y ) [ l  + 0.12(log - 3)1, (43a) 

Nm ( X  + 00, 7) = N ( y )  [1 + 0.25 (log - I)], (43b) 

where the demagnetizing factor N ( y )  for ellipsoids can be 
found in Table I. In the range 10 I y I 100, (43a) and 
(43b) fit the model results with maximum deviations of 
1 % and 1.5 % , respectively. Including the results for y < 
10 in Tables IV and V, the lower boundaries of the y 
range with the same indicated errors extend to 2 and 7 for 
Nf and N,, respectively. 

Taylor calculated the anisotropic electric (CY) and mag- 
netic (0) polarizabilities of conducting cylinders [40], 
[4 13. In Taylor’s terminology, “conducting” means 
“without field penetration,” so electrically E = 0 and 
magnetically B = 0. Therefore we can relate the longi- 
tudinal CY/ and transverse CY,, electric polarizabilities to 
Nm(03) ,  and the longitudinal and transverse P,, mag- 
netic polarizabilities to N ,  (- 1). For a conducting solid 
of revolution with volume Vo, 

CY/ , / (EOVO/O)  = Nrnz(W)-’, e a )  

C Y f f / ( % ~ O )  = Nm(03>-’ ,  ( a b )  

P O P / / / V O  = [Nrnz(-l) - 11-’9 

cC,P,lV, = W A - 1 )  - 11-13 

(UC) 

( a d )  

where eo is the permittivity of vacuum. Equations (44a) 
and (44b) are in accordance with the analogy between 
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curve labels refer to the right side of the figure. (b) Linear scale, 1 I y I 10. 

TABLE VI 
N,,(m), N,.x(m), Nmz(-1), and Nmx(-I) FORSHORTCYLINDERS~ 

y N,,(m) N,,(m) 

0 1  0 
0.25 0.5712 0.1618 
0.5 0.4111 0.2371 
1 0.2590 0.3154 
2 0.1409 0.3829 
4 0.06635 0.4319 
m 0  0.5 

E(m) N,??:(-I) 

1 1 
0.8948 0.6764 
0.8853 0.5258 
0.8895 0.3692 
0.9067 0.2341 
0.9302 0.1361 
1 0 

N,, ( - 1 ) 

0 
0.2136 
0.2928 
0.3669 
0.4237 
0.4596 
0.5 

E ( - l )  

1 
1.1036 
1.1114 
1.1030 
1.0815 
1.0553 
1 

“The data are obtained from the electric and magnetic polarizabilities of 
conducting cylinders calculated by Taylor 1401, 1411. E (m) and E ( -  1) are 
t h e s u m s N , , + N , , + N , : f o r x ~ m a n d X =  - 1 .  

electrostatic shielding in a conductor and magnetostatic 
shielding in the same body but with x -+ 03. 

There is a relation between and at, [41], 

POPI[ = - C Y Y , m O ) ,  (454 
which leads to an exact relation between N,,(m) and 

N,(@) = Nmy(@) = ;[I - Nmz(-l)]. (45b) 

TableVIlists Nmz(oo),Nm(@), N,,(-l), andNm(-1) 
for short cylinders based on the CY and p data given by 
Taylor. From this table we see that the sum of the N,’s 
deviate from 1 by about 1 1  %. For other values of x ,  the 
deviation should be less, and this could help one estimate 
N,, for different values of x and y. 

Nm, ( - 1) 9 

B. General Rules for Nf and N, as Functions of x and y 

We give some general rules for the variation of Nf and 
N ,  with y and x based on the tables and figures. (a) For 
a given x ,  both Nf and N ,  decrease with increasing y. This 
is because the demagnetizing effect is an “end effect,” 
although the demagnetizing fields depend on both end and 
side surface poles. When y increases, the effect of cylin- 
der ends on the midplane and the entire volume decreases. 
(b) When both y and x are fixed, N,,,(y, x) > Nf(y, x). 
That is, the end effect is weaker at the midplane. (c) N,,, 
decreases with increasing x at any y. (d) With increasing 
x ,  Nf increases when y > 1 and decreases when y < 1; 
there is a region around y = 1 where Nf is insensitive to 
x.  Rules (b), (c), and (d) give the following relation for 
Nf(x) and N ,  (x) when y > 1 : 

Nrn(-l) > Nrn(0) > Nm(03) > Nf(@) 

> Nf(0) > Nf(-l). (46) 
(e) For y > 1 ,  the ratio N,,,/Nfincreases with increas- 

ing y and decreasing x .  When y increases from 1 to 10 to 
1000, N,(O)/N’(O) increases from 1.37 to 8 to 800; 
N, (03) / N f ( m )  is smaller and increases from 1.14 to 1.32 
to 1.46. (f) The minimum x for Nf(x) > O.99Nf(m) in- 
creases with increasing y. In fluxmetric ferromagnetic 
measurements, this rule tells us that can be used 
for dM/dH larger than a minimum value that depends on 
y.  For y = 10, 100, and 1000, the minimum values are 
200, 5 X lo4, and lo6. 



I II I 

CHEN er al. : DEMAGNETIZING FACTORS FOR CYLINDERS 

4 0  I 

3.0 
n 
0 
U 

(a) 5 2 . 0  
N 
W 
s! 

1.0 

0.0 

1 

-0.5 -1 
3.0 1 

0.001 

CI Y 

U 
+ 

1.0 
(c) < 

n 

b 
W 

0.0 

- 1 . 0 0  1 .o 
:fi 0.0 

1.0002 

1.oooo . 
x =0.001 n e 

v 
f l  

SI 

h0.9eoE - 
N v 

0.98BE - 

0.0002 - 

a o.0000 
X x =0.001 h 
J-o.oooz - z 

-0.0004 - 

0.0006 - 

-0.0002 I 1 

1 .o z"i: 0.0 

Fig. 8 .  M(z) /M(O)  [graphs (a) and (d)]. H d ( z ) / H a  [graphs (b) and (e)], and o ( z ) / o ( + l )  [graphs (c) and (f)] as functions of z / l  
for a cylinder with y = 20. The curves in graphs (a), (b), and (c) are for x = - 1 ,  -0.5, 0.001, 30, and lo5, respectively. 
Graphs (d), (e), and ( f )  are for x = 0.001 on an expanded scale. 

C. Minimum x for N f ( x )  > 0 . 9 9 N f ( m )  

For x > 0, the demagnetizing effect resembles the re- 
sponse of an amplifier with negative feedback. The input, 
output, and gain of the amplifier are Ha, M, and x ,  re- 
spectively. After operation, M becomes Hd(Hd = - N M ,  
where N is the local demagnetizing factor), with sign op- 
posite to that of Ha, which feeds back to the input. The 
result is that M becomes smaller and nonuniform, while 
H becomes smaller than Ha. There is perfect feedback 
when x -+ 03, and H = 0 everywhere. Since H / H a  = (1 
+ N x ) - ' ,  where N is the local demagnetizing factor, in 
order to have N f ( x )  almost equal to N f ( m ) ,  (1 + N x )  must 
be sufficiently large for H I H ,  to be small everywhere. 
Actually Nf is the smallest local N ,  and the origin of rule 
(f)  may be understood as follows. 

N f ( w )  decreases with increasing y. To have N f ( x )  al- 
most equal to Nf(03) ,  a smaller N f ( w )  must be balanced 
by a larger x to fulfill the condition of a sufficiently large 
(1 + N x ) .  Therefore, with increasing y, the minimum x 
to satisfy N f ( x )  > 0 . 9 9 N f ( w )  increases. From Table I1 
we can deduce this minimum x to be k / N f ( w )  with 15 < 
k < 17. 

D. Position Dependence of M ,  H d ,  and 0 

We have explained rules (a), (b), and (f). To under- 
stand the other rules, we have to know the details of the 
position dependence of M ,  H d ,  and a. Fig. 8(a), 8(b), and 
8(c) gives the curves of M ( z ) / M ( O ) ,  Hd(Z)/Ha, and 
a(z)/a(+Z) as functions of z for y = 20 and x = -1, 
-0.5, 0.001, 30, and lo5 computed from the one-dimen- 
sional model with n = 10. Bloomberg and Arrott [78] 
derived M ( z ) / M ( O ) ,  using a similar approach, for 1 I x 
< w and y = 100. Our curves for x = 0.001 are replot- 
ted in Fig. 8(d), 8(e), and 8(f) on finer scales. When Ha 
is positive, M ( 0 )  and a( + 1 )  are positive for x > 0 and 
negative for x < 0. Therefore, for x = -0.5 and -1, 
the signs for M ( z )  and ~ ( z )  are opposite to the signs shown 
for M ( i ) / M ( O )  and a ( z ) / a ( + Z )  in Fig. 8(a) and 8(c). 
Also, M ( z )  and & ( z )  are even functions of z ,  but a ( z )  iS 

an odd function of z .  

E. x Dependence of N,,,/Nf 
For x = lo5 (that is, x -+ w) we can see in Fig. 8(b) 

that Hd(z )  is a constant equal to -Ha in the entire cylin- 
der, which makes H very small (0 for x -, 00) and M ( z )  

-1- 7--lr--- - -- 
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finite. M ( z )  is approximately parabolic as shown in Fig. 
8(a) and as already pointed out by other authors [2 11, [27]. 
The average Hd is equal to - H a .  For the midplane and 
the entire volume, respectively, the average M is M ( 0 )  
and approximately 0.67M(O). Therefore, N,, , /Nf should 
be close to 1.5.  

When x decreases to 30, the variation of M ( z )  is grad- 
ual for small ? and sudden in the end regions. This in- 
creases the volume-averaged M to more than 0.67M(O). 
But because Hd ( z )  becomes rather z dependent and its ab- 
solute value at z = 1 is much larger than at z = 0 [Fig. 
8(b)], N , / N f  is larger. 

As x decreases to 0.001, both M ( z )  and Hd(z )  remain 
nearly constant in Fig. 8(a) and 8(b). The reason is that 
M ( z )  is very small compared to Ha, so &(I) is even 
smaller than H,. The variation of the extremely small 
Hd(z )  cannot be seen in Fig. 8(b), and the modification of 
the field by such a small Hd ( z )  causes an invisible change 
in M in Fig. 8(a). However, if we expand the scales [Fig. 
8(d) and 8(e)], we can see that the variation of M ( z )  and 
Hd(z )  continues the trend of decreasing x from lo5 to 30. 
This makes N , / N f  even larger. 

When x is small but negative, both M ( z )  and Hd(z )  
change their signs. At this point, Nf and N,,, continue the 
trend without sudden change. The situation for x < 0 can 
be seen from the curves for x = -0.5 and - 1  in Fig. 
8(a) and 8(b). For these two cases, Hd(z )  and the absolute 
value of M ( z )  remain constant until z > 0.81, and then 
they suddenly increase. This makes N , / N f  largest when 
x = - 1 .  Further discussion of this in terms of pole dis- 
tribution is given in the next section. 

F. x Dependence of Nf 

To understand the susceptibility dependence of Nf for 
y > 1, we focus on the magnetic pole distribution shown 
in Fig. 8(c) and 8(f). For the largest x ,  a(z) varies with 
z almost linearly on the cylinder surface except for the 
regions close to the ends. This means that the magnetic 
poles are the most uniformly distributed on the cylinder, 
and Hd (0), which has a greater contribution from the poles 
in the central region than from the ends, is the largest. 
Thus Nf is its largest for the highest x .  

When x is decreasing, the variation of u(z) is progres- 
sively greater in the end regions, while the magnetic pole 
density in the central region becomes gradually lower. 
Therefore, Nf decreases with decreasing x .  When x = 0, 
all the poles are at the ends, a(z) is 0, and Nf should be 
its smallest. In fact, Nf continues to decrease when x be- 
comes negative. The reason is that, although a(x) remains 
0 in a large central region for x < 0, a(z) for z close to 1 
increases with decreasing x and its sign is opposite to that 
of a( + 1 )  [Fig. 8(c)]. The side poles produce a field at 
the center directed opposite to the field produced by the 
end poles, so that the demagnetizing effect of the end poles 
is partially compensated by the effect of the side poles. 
This makes Nf a little lower than for x = 0. The side poles 
close to the ends, with signs opposite to those of the end 
poles, have a different effect on N,. They greatly increase 
the value of Hd in the end regions, so the volume-aver- 

aged N,,, increases with decreasing x even for negative x. 
Finally, we have the largest value of N , / N f  at x = - 1 .  

When y < 1, the susceptibility dependence of Nf is the 
opposite. We can explain this as follows. For oblate cyl- 
inders, the end poles are the main contributors to the de- 
magnetizing field Hd at the midplane. For a given ( M , )  
at the midplane, the end-pole density is smallest when x 
-+ 00 since, in this case, the poles are the most uniformly 
distributed on the entire surface. Therefore Nf is the 
smallest. A smaller positive x repels the poles to the end 
regions, which gives rise to a larger end-pole density and 
a larger N f .  Although all the poles are distributed on the 
ends when x = 0, the pole density on the ends is not the 
largest. This is because, when x < 0, the end-pole den- 
sity has a sign opposite to that of the side-pole density 
nearby, as can be seen from Fig. 4; thus the end poles are 
further enhanced. As a consequence, the end pole density 
increases continuously with decreasing x regardless of its 
sign, and Nf takes its largest value when x = - 1 .  

G. Error Transmission in Susceptibility Measurements 
From the above analysis we see that, at present, the 

accuracy of N ,  and Nf can reach 1 % in general. To know 
if this accuracy is good enough for the purpose of mag- 
netic measurements, we examine the influence of the error 
in N,,, or Nf on susceptibility measurements. We consider 
a cylinder consisting of material with constant x in a lon- 
gitudinal applied field Ha.  An external susceptibility xe  
can be defined as ( M )  / H a ,  where the average is taken 
over the whole volume or the midplane, depending on 
whether N ,  or Nf is considered. From (3), replacing N by 
Nf,,,, and M by ( M ), we obtain 

x = x e ( 1  - Nf,mxc)-l* (47) 

This equation is accurate under the above assumptions and 
definitions. From (47), the relative error in x caused by 
the calculation error of Nf, ,,, and the measurement error of 
x e  can be derived as 

I A X / X I  = INf.rnxl lANf,rn/N~ml + ( x / x A  IAxelxel .  

(48) 

On the right-hand side of (48), the first term is the 
transmission error from the erroneous Nf, , calculation to 
the x determination. This error equals the error in Nf,, 
multiplied by a factor a1 = I N f , , x ( ,  which can be ob- 
tained from the results of this work. We examine three 
typical cases. In the first case, I x (  and a l  are small; the 
error in Nf,,,, can be large and still result in a small trqns- 
mission error. For example, when I x( = 0.1, we have al  
< 0.1 since Nf,,,, < 1 ,  and less than 10% of the N f , ,  error 
is reflected in the final x result. The second case is a mag- 
netometric measurement for x = - 1 .  c y 1 ,  obtained from 
Table V,  is 0.37, 0.17, and 0.06  for y = 1, 3, and 10; 
only a small part of the error in N,,, is transmitted to the 
final x result. In the third case, high-x materials are con- 
sidered. To reduce the error due to the large a l ,  flux- 
metric measurements should be made with long samples, 
since Nf < N,,, and Nf decreases with increasing y. To 
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ensure that aI < 1 based on Table I1 and Fig. 2, y should 
be 12, 58, 200, and 700, for x = lo2, lo3, lo4, and lo5, 
respectively. 

The second term in (48) is the transmission error due 
to the measurement error of xe. The corresponding factor 
is a2 x/xe.  For the first case where cyI is very small, 
a2 is very close to 1 since x = xe, so the error in x is 
almost the same as the xe measurement error. For our sec- 
ond case, from (47), we have al  + a2 = 1 .  This is inter- 
esting because, when y is small so that N, + 1 and a1 + 

1, the x error is mainly due to the error in N,, no 
matter how large the xe measurement error is. For the 
high-x case, if a1 = 1 ,  we have a2 = 2 from (47), leading 
to a double transmission error to x from the xe measuring 
error. As a consequence, to obtain accurate results of x 
for high-x materials, both accurate Nf and accurate xe are 
strongly required if y cannot be made very large. 

In summary, to determine x accurately, the higher the 
I X I  of the material, the higher is the required calculation 
accuracy of Nf,,. From a magnetic measurement point of 
view, our calculation accuracy for Nf., at x = 0 is more 
than adequate, and the number of calculated points is suf- 
ficient for accurate interpolation over a wide range of val- 
ues. For other x values, the requirement for calculation 
accuracy will be determined by the particular purpose of 
the magnetic measurement; a 1% accuracy may be suffi- 
cient for many uses but is inadequate for others. For ex- 
ample, our 0.2% accuracy for x = -1 is required for 
superconductor calibration standards. 

H .  Application to Materials with x > 0 
Most materials have x > 0, and our results can be used 

for demagnetization corrections of their magnetic mea- 
surements. For materials with linear or nearly linear mag- 
netization curves, our Nf,, values are satisfactory. These 
include paramagnets, spin glasses, weakly magnetic ma- 
terials, and iron-powder cores and ordinary ferromagnets 
in the initial and saturation states. However, even in these 
cases, some caution is required. We give an example be- 
low. 

For magnetometric measurements of weakly magnetic 
materials (x < 0.01) only very small demagnetizing cor- 
rections are needed. However, such materials can also be 
measured by fluxmetric methods, as recommended by at 
least one measurement standard [79]. A source of error in 
fluxmetric measurements is if the sample diameter is less 
than that of the measurement coil. A large demagnetizing 
effect would occur in the measurement of M because the 
measured flux linkage is contributed not only by the M of 
the sample but also by the Hd within the coil volume pro- 
duced by the sample’s poles. Furthermore, fluxmetric 
measurements on weakly magnetic materials require many 
coil turns, which ensures that this error will arise. The 
error in x due to this effect can be as large as 30%, even 
if the requirements of [79] are followed [38], [64]. 

The magnetization curves of ferromagnetic materials 
are nonlinear, and it is difficult to assign to them specific 
x and Nf,,(x) values except in the initial state and when 
approaching saturation, as mentioned above. However, 

our results can still be used satisfactorily for long mag- 
netically soft materials over a wide field range. We can 
regard x as the normal susceptibility x,, = M , / H , ,  where 
the subscript m denotes the maximum value at the end- 
points of a symmetric magnetization loop, and use Nf(x). 
To extract an unknown x from fluxmetric measurements 
of xe on samples with known y, one uses Nf. But a knowl- 
edge of x is required to select the appropriate Nf value. 
The known xe  and y and the unknown x and Nfare related 
by (47) and Table I1 or Fig. 2, so the unknowns can be 
calculated simultaneously. An iterative process may be 
used. Nf is estimated based on the measured xe using Ta- 
ble I1 or Fig. 2, and x is calculated from xe and Nfusing 
(47). Then a better estimate of Nf is made. Since the dif- 
ferential susceptibility is field dependent in ferromagnets, 
this treatment involves some error. The resultant x is an 
effective susceptibility xeff. Its value is between x,, and an 
averaged differential susceptibility in the sample. We have 
xeff = x,, when H ,  --$ 0 or H ,  + 03, or when the sample 
has very large y and x,, and H ,  is close to H ,  ( x,,, ,,,). In 
other cases, including the use of N, and Tables IV and V, 
the resultant xeff may be larger or smaller than xn, de- 
pending on the measurement conditions. 

For measurements of semihard ferromagnets with in- 
trinsic coercivity H,, Zijlstra [58] has suggested a simple 
method to obtain a reasonably accurate loop in which the 
demagnetizing corrections for M and H are performed 
using Nf(0) and Nf(03), respectively. With our results, 
nonzero finite effective x (corresponding to the differen- 
tial susceptibilities at H = H ,  and H = H,) can be used 
more properly. 

I .  Remarks Concerning x < 0 and Nonuniform x 
For normal diamagnetic materials with uniform x, val- 

ues of N, ( x  = 0) are more than adequate for experimen- 
tal work. However, large negative values of x arise in ac 
magnetic measurements of normal conductors and both ac 
and dc measurements of superconductors, where bulk 
magnetic moments have their source in eddy currents and 
shielding supercurrents, respectively. These magnetic 
moments allow us to ascribe values of M ,  H ,  and x to 
these materials. 

In an ideal type-I superconductor, x = -1 because B 
and the permeability po( 1 + x) both equal 0 at every point 
in the material. The same applies to a normal conductor 
in an ac field when the skin depth is negligible compared 
to its dimensions. Thus there is an equivalence between 
these cylinders and a normal perfectly diamagnetic cyl- 
inder. For these cases, our values of N,,, ( x  = - 1) and 
Nf( x = - 1) can be used. We have verified this experi- 
mentally with a magnetometric low-field ac susceptibility 
measurement of a niobium cylinder (y = 1.033) below 
the critical temperature. The susceptometer was cali- 
brated using the known demagnetizing factor and dipole 
field of a superconducting niobium sphere [80]. We ac- 
counted for a 0.4% volume decrease of both the standard 
sphere and the sample cylinder upon cooling to 4 K, and 
deduced a value of N, equal to 0.361 0.001 from (47), 
with the uncertainty based on the measured scatter in xe. 
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Our two-dimensional calculations give 0.3622. Thus we 
see that cylindrical superconducting standards for mag- 
netic measurements for use at low fields and temperatures 
can be made using accurate values of N ,  (- 1). 

The results of this work have to be used more carefully 
for materials that do not have constant susceptibility. In 
these cases, an effective susceptibility should be found. 
For example, the M ( H )  curve of an ideal type-I1 super- 
conductor in fields below the lower critical field H,, is 
linear, with x = - 1. In the mixed state, M ( H )  increases 
when H > H,, and the effective x should be close to the 
differential susceptibility at each point, which is positive. 
This causes a discontinuity in the value of N ,  above H,, , 
and a proper demagnetizing correction should take ac- 
count of this effect. Similar caveats apply to the inter- 
mediate state of superconductors. 

Normal conducting cylinders in ac fields have M ( H )  
loops, and a complex susceptibility with a negative real 
part can be defined [81]. However, this susceptibility is 
due to eddy currents constrained by the skin effect, dif- 
ferent from our model assumption of uniform susceptibil- 
ity. Nf,, for x = - 1 may be used in the limit of small 
skin depth. Otherwise, to obtain good results, y must be 
large enough so that only a small correction is needed; 
our Nf,, values for an effective x < 0 can be used. A 
similar case arises in hard superconductors, where a por- 
tion of the magnetization comes from penetrated super- 
currents that follow the critical-state model [82]. 

Since most cases of magnetic measurements involve 
nonlinear magnetization curves, the demagnetizing cor- 
rection using the factors calculated for constant x should 
be made cautiously. For this, a deep understanding of the 
magnetization process and the ,demagnetizing effect is 
most important. 

APPENDIX 
The demagnetizing field produced by a ring-shaped dis- 

tribution of magnetic poles is calculated below. Results 
are presented both for the case where a ring has a finite 
width, as on the end-plane of a cylinder, or a finite height, 
as on the side surface of a cylinder. The method follows 
that of Gray [83], who calculated the field produced by a 
disk of charge. The pole density is taken to be uniform 
over the width or height of the ring. 

The magnetic scalar potential at a point (rir z,) pro- 
duced by a pole density U on the j t h  ring is given by 

9, = (U/4Tpo) 1; I n  rj[(Zj - Zj)2 + rj + r: 

- 2rjrj cos 4]-'12 drj d4,  (All  

+$ = (ua/4?rp0) S:" Sz* [(zj - zi)2 + a2 + r: 

- 2 ~ i a  COS dz, d4, ( A 3  

where (P, and as represent the potential due to a ring on 
the end-plane and side surface, respectively. The param- 
eters rl and r2 are the inner and outer radii of the ring of 
poles on the end surface, and zI and z2 are the limits in 
the z direction of the ring on the side surface. The limits 
of integration are changed to give 

+e = p F(r ,  4) dr d4  - j:' F(r,  4) dr d4 ,  (-43) 

+s = sp G(z, 4)  dz d4 - G(z, 4) dz d4 ,  (A4) 

where F(r ,  4) and G(z, 4)  represent the integrands in (Al)  
and (A2). The definite integral S F ( r ,  4)  dr d4 has been 
evaluated by Gray [83]. Using a similar method, we eval- 
uate the other integrals with the results, 

F(r, 4) dr d4 = (ur2 /2~0)  som exp (-A I zj - zi I) 

h-'J1(hr2)Jo(hri) d h ,  ('45) 

(A61 
where Jo  and J I  are Bessel functions and 2a is the diam- 
eter of the cylinder. Similar expressions where the limits 
of integration are r l  and z1 are obtained from the previous 
expressions by replacing r2 with rl and z2 with z I .  

The interaction constants NY and N:' are defined for 
rings on the ends as 

N :  = (Lco/u) a@.,/% = fS, - f4, 

= rz,/<2lz,l>l[ r2 Iom exp (-xlz,I)Jl(hr2)JO(X~,) d h  

- rl I exp ~ - ~ l z , l ~ J l ~ ~ ~ l ~ J o ~ ~ ~ , ~  d h ] ,  ('47) 

= - ; [ r2  som exp (-A lz, I)JlW2)Jl O r , )  dX 

- rl iom exp ( - ~ l z , l ) J l ( ~ ~ l ) J l ( ~ ~ l ~  d h ] ,  (A81 

N :  = (Po /4  a+.,/ar, = f S r  - f ; r  

and, for rings on the side surface, as 

N:' = (PO/U> a+,/az, = fiz - f;, ('49) 

= - ; [ a  iom exp ( - h ~ ~ ~ ( ) J ~ ( X a ) J ~ ( h r , )  d h  

1 - a 1, exp ~ - ~ I ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , >  d h  , (A101 
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N :  = ( p o / u )  a+.,/&-; = f i r  - f i r  

= [z2/(21z201 a iom exp (-hlz2l)J,(Xa)J,(Xr;) dX 

- [z1/(21z101 a ’jomexp (-Xlzl()J,(Xa)Jl(Xr;) dX. 

(AI 1) 

We have arbitrarily set zi = 0 for ease of notation and 
have included the factor z,/ 1 zj I when needed to account 
for the sign reversal that occurs when zj < zi. The inte- 
grals in theffactors are given in [84] and reduce to 

where a2 = r2 and b2 = ri, and 

+ b2(2na2)Y1Mcy2, P2))z2/lz2l (a2 < b2), 

(A15b) 

where a2 = ri and b2 is the radius of the cylinder. The 
factors f;?, f&, f&, and f i r  are given by the same expres- 
sions except r2 is replaced by rl and z2 is replaced by z I  . 

For each case k = 4ab/[(a + b)2 + z2],  and F ( k )  and 
E ( k )  are the complete elliptic integrals of the first and sec- 
ond kind. A ( a ,  6)  is related to the Heuman lambda func- 
tion and is expressed in terms of the elliptic integrals of 
the third kind, A(cy, P )  = (1 - p)’I2(1 - k 2 / p ) ’ k I ( a ,  
p ,  7r/2). The parameters p ,  cy, and 6 are specified by p 
= k 2 / [ 1  - (1 - k 2 )  sin2P], k = sin a, and sin2P = 
z2/[(a - b)2 + z 2 ] .  The elliptic integrals are evaluated 
numerically using the procedure given in [MI. 
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