SPINTRONICS LAB USER GROUP LUNCH

Neil Dilley Research Scientist, BNC October 17, 2017

WELCOME USERS!

I will talk about ...

- Safety in lab
- Review of Spin Lab tools
- Review of some probes of magnetism
- Possible upgrades for lab
- Some cool techniques to know about
- Common measurement mistakes
- Tips for success

Elevator Award Symposium

- John Ribeiro (Y. Chen, physics)
- Terry Hung (Z. Chen, ECE)

WHO IS USING SPIN LAB?

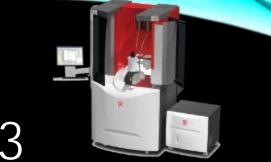
- Joerg Appenzeller (ECE)
- Zhihong Chen (ECE)
- Cliff Johnston (Agronomy)
- Oana Malis (Physics)
- Mike Manfra (Physics)
- Ernesto Marinero (Materials E.)
- Shriram Ramanathan (Materials E.)
- Kaushik Roy (ECE)
- Corey Thompson (Chemistry)
- Haiyan Wang (Materials E.)
- Alex Wei (Chemistry)
- Mary Wirth (Chemistry)

- Alexandra Boltasseva (ECE)
- Sunil Bhave (ECE)
- Yong Chen (Physics)
- Dallas Morisette (ECE)
- Leonid Rokhinson (Physics)
- Xinghang Zhang (Materials E.)
- Babak Ziaie (ECE)

over 60 users

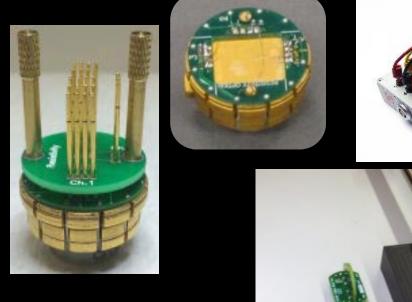
SAFETY IN THE LAB

Mental checklist ANY time you step away from the machine:


- Is the cap on the chamber?
- Is the chamber pressure <10 torr?
- Is the system going to be left at 300 K and zero field at conclusion of my run?
- Is MultiVu software running?
- Are all tools put away and the benchtop clean for the next user?
- Please wear safety eyewear!
- Quick Start guides for each option

REVIEW OF SPIN LAB TOOLS

- General field/temperature platform:
 - **Temperature: 1.8 400 K**
 - Magnetic field: +/- 9 tesla (90 kOe)
 - o 25mm diameter sample space
- Pulse-tube cryocooler makes this "cryogen-free"
- Hosts wide variety of automated measurements...



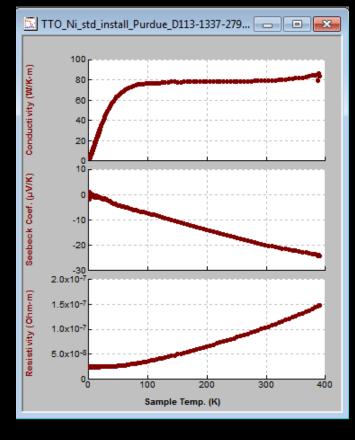
MPMS-3

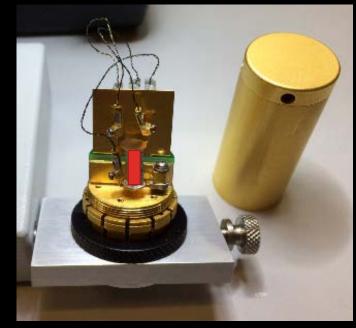
- Most sensitive instrument for measuring bulk magnetic dipole moment *m*
- Inductive measurement using gradiometer coils around a moving sample
- High speed: full magnetic m(H) hysteresis loops in just minutes
- Uses a "SQUID" : superconducting interferometer
- Samples: film, bulk, crystals, powder
- 8mm diameter sample space (4x4mm film typical)
- 10-8 emu (10-11 A-m²) sensitivity
- Temp. : 1.8 400 K, oven : 300 1000 K
- Field : +/- 7 tesla (70 kOe)
- EverCool: pulse-tube cryocooler recondenses the helium that evaporates from the dewar

PPMS: ELECTRICAL TRANSPORT

- magnetoresistance, Hall effect, I-V curves; external gating possible
 - Micro-ohm up to 5 giga-ohm
 - $\circ~$ automated sample rotation
- $\circ\,$ attach leads
 - Au wire bonding (at BNC)
 - \circ solder
 - o pressed indium
 - spring-loaded press contacts
 - o Ag paint...

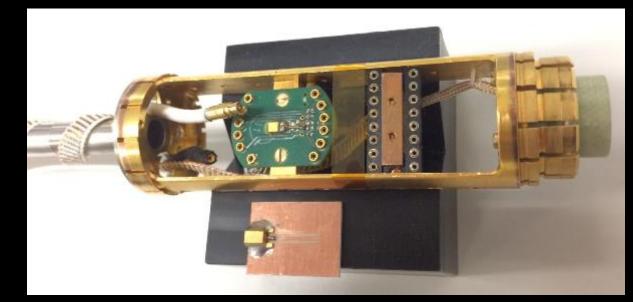
PPMS: MAGNETOMETRY


• Magnetometry: DC magnetic moment using VSM

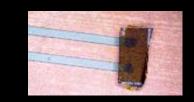

- \circ 10⁻⁶ emu up to >100 emu
- o standard bore or large bore
- o max sample diameter:
 - o standard coils: 4mm
 - o large bore: 10mm

PPMS: THERMAL TRANSPORT

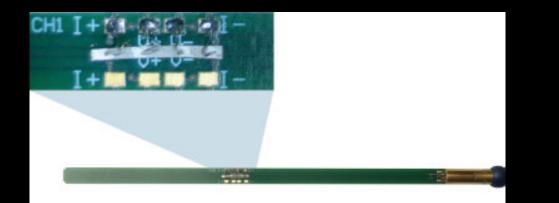
- simultaneous measurement of:
 - thermal conductivity
 - Seebeck
 - resistivity
- bulk samples
- attach leads with Ag epoxy

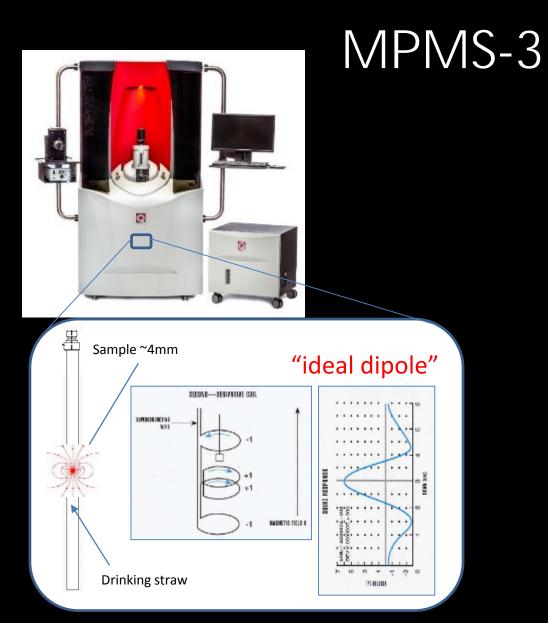


PPMS: CUSTOM PROBE


We have one Multifunction probe "MFP"

- 2D material based devices, gated transport
- Ferromagnetic Resonance (FMR) -- 6 GHz





- DC moment: "DC Scan" or "VSM mode"
- AC susceptibility: f = 0.1 1000 Hz
- oven to T = 1000 K
- electrical transport or V-biasing **while** measuring magnetic moment

REVIEW OF SOME PROBES OF MAGNETISM

(levitation)

(compass)

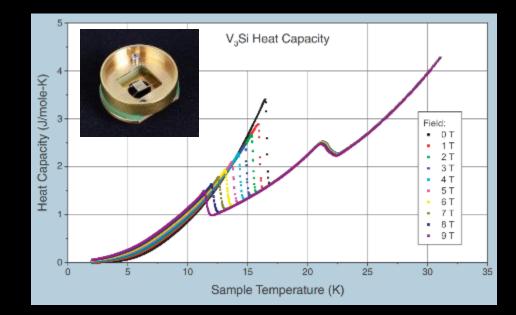
- Mechanical
 - Force (Faraday, MFM)
 - Torsion
- Inductive
 - SQUID
 - Vibrating Sample Magnetometer
 - AC susceptibility
 - Epstein frame (transformer)
- Electrical
 - (Anomalous) Hall effect
 - Planar Hall effect
 - Tunneling MR, GMR
- Magnetic Resonance
 - Ferromagnetic Resonance
- Optical
 - Magneto-Optical Kerr Effect
 - diamond NV center fluorescence

 $F = \nabla(\mathbf{m} \cdot \mathbf{H})$ $\tau = \mathbf{m} \times \mathbf{H}$

 $\begin{array}{l} \mathsf{V}(\mathsf{z}) = \Phi(\mathsf{z}) \\ \mathsf{V}(\mathsf{t}) = - \, \mathsf{d}\Phi(\mathsf{z})/\mathsf{d}\mathsf{t} \\ \mathsf{V}(\mathsf{t}) \propto \chi' \,^* \, \mathsf{cos}(\omega\mathsf{t}) \, + \chi'' \,^* \, \mathsf{sin}(\omega\mathsf{t}) \end{array}$

m: magnetic moment $M = \mathbf{m} / \text{volume}$ $\chi = d\mathbf{m}/dH$ $\Phi = B^* \text{area} (flux)$

(hard drive read heads)

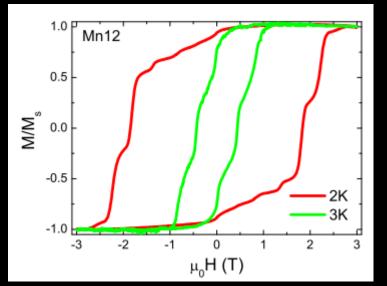

 $f = \frac{\gamma}{2\pi} \sqrt{B(B + \mu 0M)}$

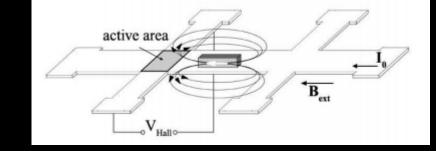
 $\theta_{\text{Kerr}} \propto M$

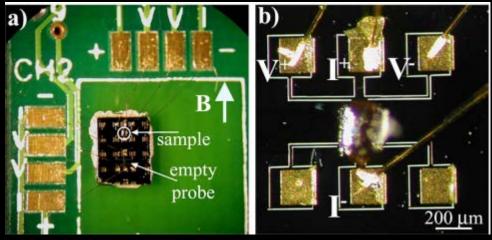
(Y. Chen group, Physics) (Shalaev group developing)

Spin lab has these already

UPGRADES FOR LAB?

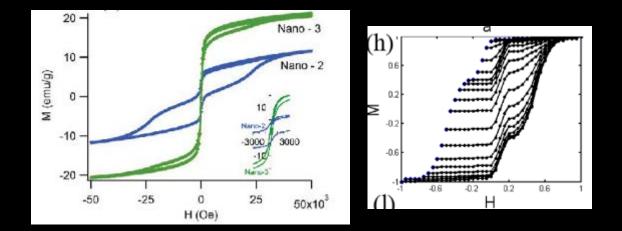


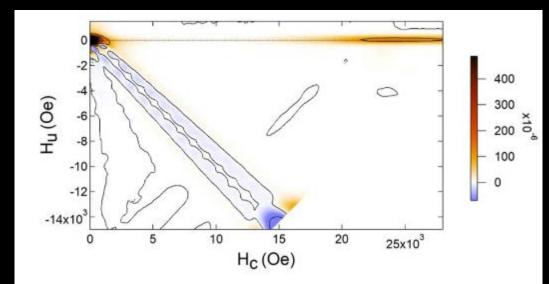

PPMS


- Heat Capacity
- FMR to 20 GHz, transmission mode
- Raman, Luminescence, other optical probes

WE COULD DO THIS EASILY: HALL MAGNETOMETRY

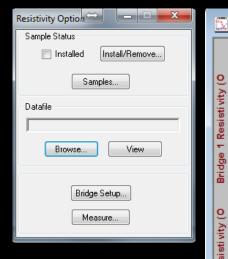
- small ~µm Hall sensors probe stray field from µm size sample
- see 1084-701 at <u>www.qdusa.com</u>
- single molecule magnet M(H)
- single crystal

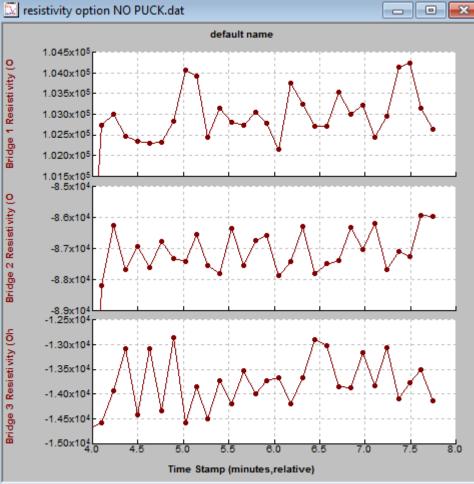




WE CAN DO THIS: "FORC" MAGNETIC ANALYSIS

- First Order Reversal Curves
- PPMS VSM or MPMS-3
- many minor M(H) loops
- separates contributions to total signal
- distributions in switching fields
- multi-phase materials





COMMON MISTAKES

PPMS Resistivity Option

- open contacts \rightarrow bogus data!
- can look like a real signal
- check contacts with ohmmeter
- ETO a better choice
 - has diagnostics like "phase angle"

COMMON MISTAKES

MPMS

- Large sample signal >0.4 emu
- saturates the SQUID
 - it was designed for 10⁻⁸ emu!
- use smaller VSM amplitude
- slower DC scan (8 sec)

💽 MPMS 3 N		- 0 2	۲			
Setup 🛛 V	SM 🗆 DI	C (o AC	Graph			
Measuremen	nt Parameter	s	-Last Measure	ment		
Averaging Time	2	sec	Temperature		к	
Logging Interval	0	sec	Field		0e	
Excitation Parameters			Moment		emu	
Peak Amplitude	5.0	mm	Moment Std. Error		emu	
Max. Accel.	28.424	m/sec ²				
Max. Moment	0.45344	emu				
			Pause		Start	
Excitation Pa	arameters					
Peak Amplitude	1	mm				
Max. Accel.	5.685	m/sec ²				
Max.						

COMMON MISTAKES

PPMS VSM

- straws ONLY in large bore coils
- sample should not be able to slide
 - photo shows a wrong method for PPMS

PPMS VSM vs. MPMS-3

- **PPMS**: goes faster
 - sweep field 200 Oe/sec
 - vibrations are much stronger >100 m/s2
- MPMS-3: take it slow
 - STABLE field during measure, no sweep
 - vibrations less (esp. DC Scan)

TIPS FOR SUCCESS

• Consult Quick Start guides for each option!

- red tab in binder
- all training material on Birck Wiki page


https://wiki.itap.purdue.edu/display/BNCWiki/ Electrical+and+Magnetic+Properties

- Example sequences will get you started
 - c\QdDyancool\Sequence
 - c\QdSquidVsm\Sequence

Pages /... / Electrical and Magnetic Properties
PPMS - Quantum Design DynaCool
Created by Wirth, Justin C, last modified by Dilley, Nell R on Oct 12, 2017

Blog: Spin Lab Newsletter Archive

PPMS - Quantum Design DynaCool

iLab Name: PPMS iLab Kiosk: BRK Characterization Core FIC: Joerg Appenzeller Owner: Neil Dilley Location: BRK 1157A Maximum Wafer Size:

Trained user quick reference
 1.1 ETO quick start guide
 1.2 VSM quick start guide
 2 Pre-training
 3. Training
 3.1 Electrical Transport
 3.2 VSM
 3.3 Thermal Transport
 3.4 Custom measurements
 4 Questions & Troubleshooting
 5 Process Library
 6 References

TIPS FOR SUCCESS

Demo samples

- MPMS user kit
 - PMA, IMA CoFeB films
 - Kapton tape with dust: Dust is enemy #1!
- ETO user kit: resistors
- Rotator user kit: Hall sensor
- TTO user kit: nickel alloy standard; aluminum
- Best demo sample: measure nothing!
 - blank sample holder
 - substrate
 - known control sample
- MPMS-3 Accuracy of reported moment
 - use Sample Geometry Simulator

3 MPMS 3 Sample Geor	metry Simulato	or 😂 😐				
Reference Geometry (Pd Cylinder) Sample Geometry						
Height (mm)	3.80	Thin Film (Field \perp ab) \checkmark				
Diameter (mm)	2.80	a (mm)	4			
DC Scan Length (mm)	35	b (mm)	4			
		Radial Offset (mm)	1			
Measurement Parameter	s	Estimated Correction Factors				
VSM Amplitude (mm)	5	VSM Measurement	1.182			
DC Scan Length (mm)	35	DC Scan	1.092			
			Calculate			