How to set up FMR sweeps based on static/conventional magnetometry data

Using SI units here: B [tesla] = $\mu_0(H+M)$

For purposes of setting up initial FMR sweeps:

We can roughly estimate things easily by taking:

- $\gamma/2\pi \sim 28$ GHz/T (pure spin gyromagnetic ratio)
- expressing μ_0 H and μ_0 M in units of tesla (1 T = 10 kOe); sometimes we drop the μ_0 prefactor but the units of H or M in tesla mean that it is implied
- M_s can be calculated from M(H) loop from SQUID, knowing film thickness and area, and using conversion:

```
M_s[tesla] = M_s[emu/cm3] / 796
```

Remember that the Kittel resonance condition reverts to the Larmor precession formula in the absence of anisotropies:

$$f = \gamma \mu_0 / 2\pi * H$$

and the discussion below is about solving the equation of motion for spins in the presence of various anisotropies relative to the direction of applied field:

- Demag field $H_D = -N_dM$ where N_d is the demag factor (N = 1 for thin film is assumed below)
- In-plane anisotropy field H_κⁱⁿ which is the preference for moment to point along one direction in the plane of the film. This is usually very small in materials like CoFeB and NiFe.
- Perpendicular Uniaxial anisotropy field $H_{K^{\perp}} = 2K_{U}/\mu_{0}M_{s}$
 - In our convention here, $H_{K^{\perp}} > 0$ tends to point moment out of plane
 - if $H_{K^{\perp}}$ is large enough, namely larger than the demagnetization field, then $M_{EFF} = M_S - H_{K^{\perp}} < 0$, indicating we have PMA film
 - If $H_{\kappa^{\perp}} = 0$ this implies an easy plane anisotropy: the material wants the moment to lie in the plane, but this does not specify any particular direction in-plane (that is specified by $H_{\kappa^{in}}$)
 - $\circ~$ One can also have a tilted anisotropy in which $H_{K}{}^{\perp}$ is not enough to completely bring the magnetization out of plane.

Applied field Out of Plane (OOP) of film:

$$f_{RES} = \frac{\gamma \mu_0}{2\pi} (|H_{RES}| + H_K^{\perp} - M_S) = \frac{\gamma \mu_0}{2\pi} (|H_{RES}| - M_{EFF})$$

So, an $H_{K^{\perp}} > 0$ adds to the applied field, while the demag field $H_{D} = -M_{S}$ needs to be overcome in order to bring the moment out of plane and produce a strong resonance ($f_{RES} > 0$). Note that H_{K} and M_{S} cannot be separated in OOP FMR measurements, so in our examples below we express the combined M_{EFF} .

- MEFF is directly measured in SQUID M(H) data along hard-axis:
 - \circ PMA film: hard axis is in-plane, so in-plane saturation field = $H_{K^{\perp}} M_{S}$ = M_{EFF}
 - $\circ~$ IMA film: hard axis is out-of-plane, so OOP saturation field = $M_{S}-H_{K^{\perp}}$ = M_{EFF}

Applied Field In Plane (IP) of film:

$$f_{RES} = \frac{\gamma \mu_0}{2\pi} \sqrt{\left(M_{EFF} + \mathbf{H}_K^{in} + |H_{RES}|\right) \left(\mathbf{H}_K^{in} + |H_{RES}|\right)}$$

 H_{κ}^{in} : in-plane anisotropy field; i.e., anisotropy between directions X and Y in the plane of film. $H_{\kappa}^{in} > 0$ means it is collinear with external field.

The first term in the square root is the field seen trying to get the moment out of plane, and again M_{EFF} appears since it is the total perpendicular anisotropy (competition between demag and uniaxial anisotropies).

The second term in the square root is for the in-plane direction that is perpendicular to the external field.

We recover the familiar textbook Kittel equations for OOP and IP (Kittel's Intro to Solid State Physics, 5th Ed.) by ignoring $H_{\kappa^{\perp}}$ and $H_{\kappa^{|N|}}$.

PhaseFMR	here	comments
IP Ms	MEFF	Software doesn't know about $H_{K^{\perp}}$ so it is included in reported M_{S}
ΙΡ Ηκ	Ηκ ^{IN}	
OOP Ms	Ms	You can manually enter an HK (=H ${\rm K}^{\perp})$ in the software; we choose
		to leave that H_{K} =0 so that reported M_{S} is M_{EFF}
ΟΟΡ Η _κ	H _κ ⊥	

Translating these equations to PhaseFMR software:

<u>IP Example for IMA CoFeB film (50nm thick)</u> From SQUID: OOP saturation field = $\mu_0 M_{EFF}$ = 1.32 T From FMR: $\mu_0 M_{EFF}$ = 1.267 T ($\gamma/2\pi$ = 29.3 GHz/T taken from Shaw(2015)) (HK_{in} may be due to magnet remanence?)

IP Example for PMA CoFeB film:

From SQUID: IP saturation field = - $\mu_o M_{EFF}$ = 0.154 T From FMR: $\mu_o M_{EFF}$ = $\mu_o M_s$ (in PhaseFMR) = -0.15 T Reminder: in PhaseFMR below, H_k is actually H_k^{in} because we're doing IP analysis.

 $\label{eq:oop} \begin{array}{l} \hline OOP \ Example \ for \ PMA \ CoFeB \ film \ (same \ one \ as \ above): \\ \hline From \ SQUID: \ IP \ saturation \ field = - \ \mu_o M_{EFF} = 0.154 \ T \\ \hline From \ FMR: \ \mu_o M_{EFF} = -0.124 \ T \end{array}$

(Agreement not good, may need to remeasure: we need to resolve this before publishing as an app note)

<u>IP Example for Permalloy reference sample NiFe 10nm / Ta 5nm (sent in CryoFMR User Kit)</u>: Measured in-plane in "hard" direction (Sharpie line is perp. to H_{DC}); fitted H_K < 0 validates this From SQUID: OOP saturation field = $\mu_0 M_{EFF}$ = 0.91 T (intersect lines from 0-0.6 T and 1.1-1.5T) From FMR: $\mu_0 M_{EFF}$ = 0.90 T

OOP Example for Permalloy reference sample

