Birck Nanotechnology Center

Date: Sept. 2020

AXIC PECVD

1. Purpose

The BenchMark AXIC PECVD is a Plasma Enhanced Chemical Vapor Deposition system used to deposit Silicon oxide and nitride. The system consists of a process chamber, main unit, RF generator, heater, and automatic pressure controller. There are six gas lines:

02	CF4	N2O	NH3	10% SiH4	N2
200sccm	200sccm	200sccm	100sccm	200sccm	200sccm

Maximum RF power: 600 Watts Maximum electrode temperature: 400 C Minimum base pressure: 20 mTorr

Figure 1 - Axic PECVD System

2. Loading a Sample

- 1. Change the HiVac process valve to off. Wait until you hear the vacuum valve close.
- 2. Change the Vent process valve to on. Wait for the process chamber to reach atmosphere. The Vac/Atm status will turn green and change to Chamber at ATMOSPHERE.
- 3. Open the chamber using the Hoist button.
- 4. Place the Axic Safety Bar underneath the back of the open chamber as a safety measure.
- 5. Verify that there are no particles or contaminants present inside the chamber, then place your sample on the electrode.
- 6. When the sample is placed, remove the safety bar.

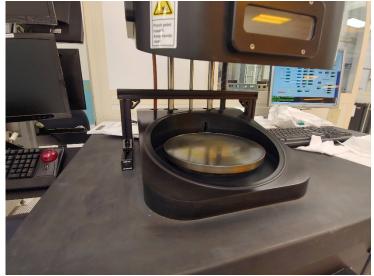


Figure 2 - Axic Chamber Open with Safety Bar In Place

3. Processing a Sample

- 1. Close the process chamber by changing the **Hoist** to down
- 2. Open the **SoftVac** valve to start pumping.
- 3. Wait for the process chamber pressure to reach 1500 mTorr or lower.
- 4. Close the **SoftVac** valve.
- 5. Change the HiVac valve to open.
- 6. Set the temperature for the electrode heat controller and change the **Control** to on.
- 7. Wait until the temperature reaches the set point.
- 8. Input the MFC Valves set points for the process gases needed.
- 9. Change the corresponding MFC Valves from closed to open.
- 10. Change the Freeze/Follow All to Follow All. The gases will start flowing.
- 11. Set the process pressure in the TV Setpoint value. Change TV Go to Setpoint to on.
- 12. Check the electrode spacing and change it if needed.
- 13. Set the RF generator power by entering your RF power in Setpoint value.
- 14. Set the Manual Run Timer to the desired deposition time.
- 15. Once the pressure, gas flows, and temperature are within desired ranges and stabilized, click on **Manual Run** to start the process. When the timer reaches zero

the RF, heater, pressure controller, and gases will be turned off.

- 16. After deposition, purge the process chamber using 200 sccm N2. Enter 200 into the N2 MFC **Setpoint**. Change the N2 MFC Valve from closed to open then click the **follow all** button.
- 17. Turn off N2 purge after the chamber has been purged at least 5 minutes.
- 18. Wait for the system to reach base pressure.
- 19. Change the HiVac process valve to off. Wait until you hear the vacuum valve close.
- 20. Change the **Vent** process valve to on. Wait for the process chamber to reach atmosphere. The **Vac/Atm** status will turn green and change to Chamber at ATMOSPHERE.
- 21. Open the chamber using the **Hoist** button.
- 22. Place the safety bar inside the back of the chamber.
- 23. Unload your sample. THE ELECTRODE IS HOT, SO BE CAREFUL.
- 24. Wipe the process chamber down thoroughly using clean room wipes and IPA/DI.
- 25. Remove the safety bar.
- 26. Close the process chamber changing the Hoist to down.
- 27. Run CF4/O2 clean process to clean the chamber. Please make sure the chamber is clean.
- 28. Fill out the equipment log kiosk page.

• Please contact Rich Hosler (<u>hosler0@purdue.edu</u>) if you have any questions.

4. Recipes:

Silicon Dioxide:

Pressure	230 mTorr
RF Power	26 Watts
10% SiH4	35 sccm
N2O	200 sccm
Temperature	300C
Electrode spacing	2.5"

CF4/O2 Cleaning:

Pressure	600 mTorr
RF Power	200 Watts
CF4	20 sccm
02	100 sccm
Temperature	250 C

Silicon Nitride: Chamber Conditioning prior to deposition

Pressure	600 mTorr
RF Power	150 Watts
NH3	100 sccm
Temperature	300C
Electrode spacing	3"
Time	5 min

SiNx Recipes*

NH3/SiH4	Pressure	Temp	RF	Dep Rate
100/120	400	300	100	~18 nm/min
100/120	600	300	100	~39 nm/min
100/120	600	300	150	~40 nm/min
100/120	600	150	150	~46 nm/min

SiO2 Recipes

N2O/SiH4	Pressure	Temp	RF	Dep Rate
200/35	230	200	100	~40 nm/min
200/35	230	170	50	~40 nm/min
200/35	230	140	50	~40 nm/min
200/50	230	250	50	~55 nm/min
200/50	230	250	26	~55 nm/min
200/35	230	250	26	~40 nm/min
200/100	230	250	50	~90 nm/min
200/100	230	250	26	~60 nm/min