

A Short Guide to Cryogenic Probing & Transport Measurements

> David R. Daughton, PhD Applications Scientist

Why probing?

Flexible electrical measurement platform enabling:

 Wafer-level characterization (avoid time and cost of packaging)

Manual probe stations ideal for research-scale characterization

Why probing?

Flexible electrical measurement platform enabling:

- Wafer-level characterization (avoid packaging)
- Device visualization

"Rapidly Characterize Ferroelectric Devices over Variable Temperatures" Lake Shore Application Note, www.lakeshore.com

Why probing?

Flexible electrical measurement platform enabling:

- Wafer-level characterization (avoid packaging)
- Device visualization
- Environmental control (atmosphere, temperature, field, light,...)

Range of platforms

Sample stage

Sample stage (4.3 K)

Sample stage

- "Closed-cycle" system

Sample stage

Liquid helium or nitrogen

- "Wet" system
- Often lowest vibrations
- Faster cycle times

Vacuum chamber

Prevents gas adsorbates freezing to surface of wafer

- Frozen air is a great insulator
- Poor vacuum at room temperature can lead to poor electrical contact at cold temperatures

Thermal radiation

Radiation shield

Probe arm

Probe arm design to limit thermal conduction

Cryogenic probe stations in a nutshell

The stage gets really cold, or fairly hot 1.3 K to 675 K (-457 °F to 750 °F)

Need to make electrical contacts to a device on the stage

Probe pad

The ZN50 probe

Tailoring the probe to the application

Probe style

(how are you taking the measurement?)

Tip size (how big is the probe pad?)

Probe style

Standard probe

Parametric (or dual connector) probe

Continuous variable temperature probe

Probe style: CVT

Continuous Variable Temperature Probe

Lake Shore probe station catalog, www.lakeshore.com

Continuous electrical contact across temperature

Probe style: parametric (C-V measurements)

Parametric (or dual connector) probe

Ground and signal routing in proximity to the DUT

 "S-2T" configuration reduces stray inductance in probe arm cabling – improves reliability of C-V measurement

"Variable-Temperature, Wafer-Level Capacitance Measurements" Lake Shore Application Note, www.lakeshore.com

Temperature-dependent C-V results

Unpublished

Drastic shift in C-V characteristic as temperature is lowered

Probe style: parametric (pulsed measurements)

Parametric (or dual connector) probe

Pulse Shape 1.2 1.0 Amplitude 0.8 0.6 0.4 0.2 0.0L 20 80 100 120 40 60 140 160 180 Pulse Time [ns]

Ground and signal routing in proximity to the DUT

Cryo temperatures: Duty cycle and pulse duration

Probe size

- Largely, probe wire is 250 micron in diameter and is tapered to a point
- Tip size is tailored to the pad size
- Probe point can be as large as 100 μm radius and as small as 3 μm radius

Probe material

Material	Pro(s)	Con(s)
Beryllium copper (BeCu)	Low contact resistance, easy to clean	Quickly oxides, wire easily deforms
Tungsten (W)	Punctures oxides, robust	Difficult to clean, punctures wrong oxide
Paliney 7 (P7)	High corrosion resistance	Wire easily deforms
Gold-coated tungsten (Au)	Robust + low contact resistance to Au	Au layer wears

Tungsten tips on niobium sheet

Moh hardness of Nb oxides similar to quartz (~7)

BeCu tips on gold transistor contacts

Moh hardness of Au around 2.5 to 3

Contact resistance

Contact resistance

Contact resistance

Repeated Transfer curves at 77 K

Consistency and repeatability checks are a valuable tool to evaluate contact resistance.

Cleaning dirty probes

BeCu/Au/P7 probe wire

- Organic contaminants removed with solvent
- BeCu oxidation removed with Tarnix, rinse after (see manual)
- Especially for smaller radius tips, apply liquid to knee of probe and let droplets run down probe wire

W probe wire

- Organic contaminants removed with solvent
- Don't recommend corrosives to remove oxidation
- Mechanical removal
 - Tip paper
 - Clean, broken probe blade
 - In a pinch, clean paper with tight grain (Post-Its, surprisingly)

Probe tip tips

Poor electrical contact with CVT on oxidized probing pads

Consider:

- Standard ZN50 with W probes
- Lateral (left-right) scrubbing of probe pad with CVT probe tip

Probe puncture – electrically shorting gate electrode to channel

Consider:

- CVT probes with Au-coated tips
- Different probe material (BeCu or P7)
- Reduce overtravel on landing

The semiconductor analyzer

- Lake Shore temperature and mag field controller interfaces with Keysight B1500
- Lake Shore temperature controller interfaces with Keithley 4200

Charging current due to cable capacitance

$$T_c = C \frac{dV}{dt}$$

"Considerations for Low Current Measurements in Cryogenic Probe Stations" Lake Shore Application Note, www.lakeshore.com

Evacuate or gas purge your probed measurements

Water vapor absorbed on surfaces can open additional, unintended conduction channels

- Triaxial configuration for lowcurrent measurements
 - 3-lug, triaxial vacuum feedthrough
 - Guarded measurement from analyzer to the probe
 - Optional triaxial sample stage for backside device contact
- Use high quality triaxial cabling from instrumentation to prober
- Minimize flexing of cabling

Cryogenic Evacuated transport (I-V) measurements

8 10

InSe

 High vacuum, low-leakage probing ideal for characterization of devices fabricated from airsensitive 2D materials

Cryogenic transport (I-V) measurements

Sample Temp

Arm

10

Thermal considerations

- Good device contact to thermal sample holder
- Thermally anchored probes
 - Minimizes heat load on device
 - Configurable for various operational conditions

100

Sample Stage Temperature (K)

10

Cryogenic transport (I-V) measurements

Recommended sample mounting

Method	Pro(s)	Con(s)
GE varnish (IMI 7031)	High thermal conductance	Long cure time, soaking sample and holder in aggressive solvent to remove
Vacuum grease & clamping	Quick sample exchange, good thermal conductance	Probe interference with clamps, wipe clean with Xylene
Silver paint & paste	Backside electrical contact, reasonable thermal conductance	When cleaning, mobile silver particles can short or damage devices
Carbon paste	Backside electrical contact, reasonable thermal conductance, can be used at higher temperatures	When cleaning , mobile carbon particles can short or damage devices
Cyanoacrylate (thin layer)	Quick cure, easy removal, suitable for small surface area	May not endure repeated thermal cycling

Not recommended for thermal reasons

- Double-sided carbon tape
- Kapton tape
- Vacuum grease with no clamping

Cryogenic transport (I-V) measurements

If good mechanical clamping of substrate to sample stage is not possible, silver paste under sample offers better thermal contact than N-grease alone

Top view Clamp Side view Sapphire Stage Top view Side view Sapphire Stage

- Low temperature induced strain in polymer network is relieved by coarsening of Apiezon N film Coarsening results in spotty thermal transport to device substrate
- Applied clamping force changes thermodynamic landscape and reduces the onset film segmentation

Variable temperature pHEMT results

Microwave probing

- Cabling and cryogenic probes for:
 - DC to 40 GHz
 - DC to 67 GHz
- Calibration substrates

Recommend mounting calibration substrate on sample stage and executing calibration at every temperature of interest

4 K open measurement following wafer-level calibration — ~2 hours between curves

41 | **Confidential** Lake Shore Cryotronics, Inc.

Monolithic quantum computing ICs

- 2 K sample stage temperature
- Integration of 67 GHz microwave probe, low-leakage DC transport measurements & multiple DC bias pins for gating
- Future: with magnetic field & 140 GHz probing

"Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs", IEEE EDL (2019).

1E-6

42

Wafer-level, gated Hall effect measurement

а

- Functionalized graphene
- 4- and 6-terminal Hall measurements
- Backside gating
- Proximity-induced ferromagnetism

Fiber optic solutions

Illumination

- UV-VIS, IR-VIS multimode
- Single mode & PM fiber
- Specials
 - Lensed
 - Solarization Resistant
 - Mid-IR

Integration

Collection

UV-VIS, IR-VIS multimode

Summary

Why use a probe station

How:

- Tailor the probes to the application
- Use triaxial cabling for low current measurements
- Mount your sample wafer appropriately
- What:
 - Transistor IV curves
 - Hall effect measurements (magnetic field)
 - Optical excitation and collection

