Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Table of Content Zone
locationtop
styledisc

Table of Contents
outlinetrue
indent25px
stylenone

Overview

Sample cleanliness is extremely important for achieving good results in nanofabrication (hence the need for a cleanroom). However, simply working in the cleanroom does not guarantee cleanliness, proper steps need to be taken at every processing step to ensure a clean result. While some processes have more stringent cleanliness needs than others, some general rules apply for all types of lithography:

  • Handle substrates/wafers with cleaned tweezers, not hands.
  • Substrates should not be left exposed. Although the cleanroom offers

 

Solvent Cleaning

Standard Process: TAI clean

  1. 5 min sonication in beaker of Toluene.
  2. 5 min sonication in beaker of Acetone.
  3. 5 min sonication in beaker of Isopropanol.

Background

Standard solvent cleaning is a three step process of ultrasonically agitating the substrate in subsequent solvent solutions to remove organic contamination. The first step is a nonpolar solvent (toluene) to remove any oils or grease present on the sample. The second step is a powerful polar solvent (acetone) to remove polar contaminants such as photoresist. The final step is a polar protic solvent (isopropanol).

Nonpolar Solvent Clean: Toluene

Toluene acts a nonpolar solvent to dissolve any grease or oil on the substrate. Nonpolar contaminants (especially fingerprints) will not be effectively removed by Acetone or IPA.

Polar Solvent Clean: Acetone

Acetone's high dipole moment leads to a powerful cleaning of polar residue (such as photoresist). However its quick evaporation leads to residue redepositing on the substrate if evaporation is allowed to occur.

Polar Solvent Clean: Isopropanol

IPA is used to remove fully wash away acetone from the substrate, and remove any remaining dissolved residue. As a result, IPA is not as much providing additional cleaning after Acetone as it is effectively removing the Acetone without residue.

IPA is prefered as a final step over methanol due to its significantly slower evaporation rate. Slower evaporation results in less residue, and the close dipole moments of the two chemicals (DIPA=1.66 vs. DMethanol=1.69) means the difference between the two is negligible. Additionally, unlike Methanol, IPA is nontoxic.

 

Piranha Clean


Questions & Troubleshooting


 

Process Library