Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.




Page Properties
idFunctionality

Insert excerpt
Problem Reporting Guide
Problem Reporting Guide
nopaneltrue

StatusUP
Issue Date and Description


Estimated Fix Date and Comment

Responding Staff



Page Properties
idInfo


iLab NameC - Xactix E1 Xenon Difluoride (XeF2) Etcher
iLab KioskBRK Etch Core
FICShared
OwnerFrancis Manfred
LocationCleanroom - S Bay
Max. Wafer4"/100 mm
Internal Page/wiki/spaces/BNCWiki/pages/6236532
Staff Page




Table of Content Zone
locationtop
styledisc

Table of Contents
outlinetrue
indent25px
stylenone


Overview

Page Properties
idEtch_Capabilities


TypeMaterialsRestricted MaterialsAvailable GasesMax RF PowerWafer Size
Vapor-Phase EtchSi, Mo, Ge, SiGe, W
XeF2, N2NA4 inch (100 mm) SEMI Specification


Note: Some literature mentions XeF2 etching of Ti, TiN, Ta, TaN, and TiW. Etching of these materials is temperature dependent, negligible etching occurs below 50 degrees C for any of these materials. Our system does not have heated chuck capability and is not suitable to etch these materials.

General Description

At room temperature and atmospheric pressure Xenon Difluroide (XeF2) is a white solid material.  It sublimates directly into the required vapor-phase etchant, not requiring plasma or other activation, under vacuum at room temperature and about 4 Torr pressure.  XeF2 etch is a dry, isotropic, etch desirable for many MEMS release applications.  Not needing plasma activation minimizes damage to other materials on the wafer and offers broad flexibility in process design. The XeF2-Si reaction is exothermic and the process engineer should be mindful of potential thermal issues. 

For silicon, the etch proceeds as:
2XeF2 + Si => 2Xe + SiF4


Commonly Etched Materials
MaterialSelectivity to Si

Si

1:1
Mo2:1
GeSame or Faster than Si
SiGeSame or Faster than Si


Note

Etch rates depend on the amount of exposed silicon, and will depend on a particular sample.


Commonly Used Low or Non Reacting Materials
MaterialSelectivity to Si

Thermal SiO2

1000:1
Low Temperature SiO21000:1
Si3N4>1000:1
GoldLow Amount of Attack Under Certain Conditions
CopperLow Amount of Attack Under Certain Conditions

SiC

Low Amount of Attack Under Certain Conditions
Non Reactive Materials
MetalsCompounds
AlPZT
NiMgO
CrZnO
PtAlN
GaGaAs
Polymers and Organics
Photo ResistsPDMS
C4F8Silica Glass
Dicing TapePP
PENPET
ETFEAcrylic


Sample Requirements and Preparation

The Xactix E1 Xenon Difluoride etcher will accept small clean and dry pieces up to full 100 mm (4 inch) diameter wafers.  Small pieces can be placed directly on the sample surface with no mounting required.

XeF2 etching is a chemical diffusion process, as such, the etch rate and etch profiles are dependent on loading effects. Any silicon that you do not intend to etch should be covered to prevent consumption of XeF2 resulting in etch process variation. A test run with the exact same sample size and pattern is required to determine specific etch rate for a process.  The following effects have been observed:

  1. Etch rate differences can be observed between the center and the edge for wafers with large etched areas.
  2. Exposed silicon at the edge of the wafer can consume XeF2 and lead to more etch rate non-uniformity.  This can be from photoresist edge bead removal or simply form loss of photoresist on the vertical edge of the wafer. 
  3. Patterns with differences in feature sizes can show different etch rates depending on the feature size or to the proximity of two adjacent features.


Note

The surface preparation prior to etch is important in achieving smooth etch surfaces.  Note that the etched sidewalls and bottom surfaces may show 1 – 2 μm roughness.

  1. Etch roughness occurs through a mechanism similar to micromasking resulting in irregular etch fronts.  XeF2 etches native silicon dioxide, but at a much lower rate than silicon, any surface contamination or variation in removal of the native oxide can lead to surface roughness. For well controlled silicon etching, samples are dipped into a BOE solution for 10 s to remove any native oxide prior to the XeF2 etch,
  2. All samples need to be dehydrated directly before placement in the etch chamber, either with IPA or a hotplate dehydration bake at 120" C for 10 min. The presence of adsorbed water on samples will result in the formation of both gaseous HF and a silicon flouride polymer on the sample surface. This polymer layer will reduce or completely stop etch progression, and will not be removed in either solvent soaks or O2 plasma.

The XeF2-Si reaction is exothermic and will heat the wafer.  A delay step can be used to cool the wafer between etch cycles to mitigate any observed thermal issues. 


Standard Operating Procedure


Warning

XeF2, SiF4 and any other F-containing species present in this etching process are both toxic and corrosive. Inhaling them can result in chemical burns to respiratory tracts. 


Running a Recipe

Running a Process

Logging on the System

 Loading a Sample

Etching a Sample

Activating the System

  1. Use the kiosk to make your logbook entry.
  2. Log into iLab and start your reservation and activate the tool.

Image Added

Check System Status

  1. If the system goes in to a gauge calibration routine, the total time is just over one hour.
    1. It is best to let the system complete the gauge calibration.  Contact the staff and they can adjust your time to remove the gauge calibration charges. 
  2. Do not use if currently in use or maintenance signage is present.

Logging onto the System

  1. When starting the Xactix system the prompt to the right will be displayed.
  2. Enter the username and password below.
    1. Username: user
    2. Password: user

Image Added

Loading a Sample

  1. Press the Load/Unload Sample sample button on the Main menu screen. 
  2. The system will launch a verification window. Press YES yes to continue, NO to abort chamber vent.
  3. The system window changes and begins chamber purge cycles to evacuate the chamber.
  4. When the chamber is vented, the dialog box below will appear and you can open the chamber lid. The lid will rest open on the stop behind chamber.
    1. Image Added
  5. Load / Unload your sample and close the lid.
  6. Press Examine or Done button.
    1. Examine button -  Pumps the chamber down quickly, without purges, so that the system can be quickly vented again to load the sample.  This is useful when examining a sample away from the system, and prevents moisture from accumulating in the chamber.
    2. Done button -  The system will go through a purging cycle prior to chamber pump-down. It is always necessary to press Done before etching the sample. 
  7. After pressing Done, and the chamber pumps down, it will go back to the main screen, and the Machine Status information box at bottom left will show “Ready”.

Note: Verification prompt is provided since the purge/vent process can be time consuming and inconvenient if accidentally started.

Image Added

Image Added

Image Added

Entering the Etch Menu Screen

  1. Select Etch Menu button from the Main Menu Screen.
  2. A prompt asking for a lot number will appear.
    1. Enter an alpha-numerical lot number which will be recorded with your etch data. This entry does not affect your process in any way.
    2. Image Added
  3. Press the Done button
  4. The Etch Menu will show on screen. The name of last used recipe is shown on top left.

Image Added

Image Added

Load an Existing Recipe

  1. Click the current recipe pull down to expand.
  2. Select the desired recipe.
  3. Verify the # of Cycles, Etch Time, XeF2 Pressure, and N2 pressure values are correct for your process.

Image Added

Editing Process Parameters

  1. Set the four process parameters for your etch process.
    1. # of cycles -  The depth of etching is controlled by the number of cycles. A cycle consists of the xenon difluoride sublimating to the set pressure in the expansion chamber, opening to chamber and etching for a set amount of time and evacuation of the main chamber and expansion chambers.
    2. Etch Time - The etch time is the time between the opening of the valve between the expansion chamber and the process chamber and the opening of the valve between the process chamber and the pump.  This is essentially the exposure time of the sample to XeF2 etchant.
      1. Note: Although it is sample dependent, it has been found that XeF2 is typically fully depleted after 30 seconds of exposure.
      2. You can estimate the depletion time by watching the chamber pressure after exposure to XeF2 etchant. Pressure will rise to a stable value once XeF2 has been consumed.
    3. Xef2 Pressure -
    4. N2 Pressure -

Image Added



Saving a Recipe

  1. To Save a new recipe base on current settings, click the Save button.

Changing the Number of Cycles During an Etch


Unloading a Sample


Viewing Detailed Etch Information


Finishing


Creating or Changing a Recipe

Etch Recipe Parameters



In general better results are obtained by etching in one run rather than several shorter runs where the sample is removed and then re-etched.

Questions & Troubleshooting

How long should my cycle time be?
Cycle time should be set to allow all of the XeF2 vapor to react with exposed silicon. For large areas of exposed silicon, XeF2 will quickly react with the exposed areas, and the cycle time may be reduced. For a smaller chip, cycle times will need to somewhat longer to allow all of the XeF2 to react fully.

In order to tell that all XeF2 has reacted, the chamber pressure may be monitored. The etching reaction proceeds as 2XeF2 + Si -> SiF4 + 2Xe, meaning 2 moles of reactant gas will be present at the beginning of the etch step, and 3 will be present after the etch has completed. Therefore, the pressure in the chamber will increase somewhat while the etch is proceeding, and will level off after the etch has completed.

The etch rate on my sample seems nonuniform?
Uniformity is an inherent issue with XeF2 etching. There is a limited amount of etchant released in each cycle, and the local etch rate will depend on the amount of exposed silicon and available XeF2 vapor. In general, large exposed areas of silicon will show the worst uniformity, and regular patterns of small holes (with the rest of the wafer covered) will show the best uniformity. Minimizing unneeded exposed silicon will allow for faster and more uniform etching of the pattern.

 

Process Library