Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »




Refer to the Material and Process Compatibility page for information on materials compatible with this tool.
Equipment Status
: Set as UP, PROBLEM, or DOWN, and report the issue date (MM/DD) and a brief description. Italicized fields will be filled in by BNC Staff in response to issues. See Problem Reporting Guide for more info.

StatusUP
Issue Date and Description


Estimated Fix Date and Comment

Responding Staff



iLab Name
iLab Kiosk
FIC
Owner
LocationBRK 1100A
Max. Substrate
Info LinksInternal | Staff

Overview

General Description

The LasX LaserSharp Dual LPM100 and LPM250 is a laser processing system that is integrated in-line with a roll-to-roll handling system that allows roll-fed and stationary operating modes.  The LMP100 is a 100W pulsed fiber laser (wavelength = 1064 nm), and the LMP250 is a 250W sealed CO2 diffusion cooled laser (wavelength = 10.6 micrometers).  Either or both lasers can be used to cut, ablate, or selectively heat materials in vector, raster, or drill modes.  When materials are stationary, processing is limited to the field of view for each laser.  When operated in roll-to-roll mode, processing is unlimited in the material travel direction, and repeated patterns may be triggered with a photodiode and/or camera-based registration mark sensor.  Alternatively, repeated patterns may be prompted after a periodic distance (precisely measured by encoder wheel) in the absence of registration marks.


A wide variety of materials may be processed using the lasers to achieve various outcomes.  This includes:

  • cutting shapes and patterns from rolls of plastic film or paper or from stationary plastic sheets
  • selectively heating to pattern phase changes or partially melt plastics to imprint identification marks
  • ablating a thin metal layer from a plastic substrate to pattern circuitry, electrodes, or other electronic devices and components
  • cutting through a silicon wafer to create a hole of a desired shape at a location of interest
  • cutting metallic foils is also possible in some cases

Specifications


Module:LPM100LPM250
Field of View (mm x mm)169 x 169270 x 270
Maximum Power (W)100250
Power Range (W)10 to 10025 to 250
Laser Wavelength (nm)106410,600
Laser Typepulsed fibersealed CO2

Technology Overview

 


Sample Requirements and Preparation


Guidelines:

  • Samples should be of fairly uniform thickness; otherwise settings that achieve the desired outcome in one location may result in an undesired outcome in another region of different thickness.
  • Many materials may be processed, but the most common are polymer films and sheets.  The thickness can also vary significantly.  Typical thickness for film is 25 to 500 micrometers.  Acrylic sheets up to 6.4 mm thick have been cut successfully.  Thin films that are not processed in-line as part of a roll may need to be secured with weights or adhesive tape to keep them from moving during processing due to the ventilation system.
  • Cutting through 150mm diameter (~650 micrometer thick) silicon wafers is possible with the LPM100 module via ~200X repeat tracing.
  • Some metallic foils and parts can also be cut, but they must typically not be too thick.  Thin (<200 micrometer) brass and aluminum foils have been successfully cut.
  • Although processing is limited to the field of view in Specifications, samples may be substantially larger than this.
  • Unsure whether your sample can be processed, contact



Standard Operating Procedure


Questions & Troubleshooting



Process Library


References


  • No labels