Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 283 Next »


Refer to the Material and Process Compatibility page for information on materials compatible with this tool.
Equipment Status
: Set as UP, PROBLEM, or DOWN, and report the issue date (MM/DD) and a brief description. Italicized fields will be filled in by BNC Staff in response to issues. See Problem Reporting Guide for more info.

StatusUp
Issue Date and Description
9/13/2024 Cryo has crashed
Fixed Date and Comments9/16/2024 Cryo needs regenerating

Dave Lubelski/Dan Witter

Error rendering macro 'excerpt-include' : User 'null' does not have permission to view the page 'eLog - E-Beam Evaporator'.


iLab NameC - Lesker E-Beam Evaporator - Flexible Substrate Compatible
iLab KioskBRK Evaporation Sputtering Core
FICShared
OwnerDave Lubelski
LocationCleanroom - K Bay
Max. Wafer6"/150 mm


Current SourcesTi, Au, Cr, Mo, Pt, SiO2
Potential SourcesTi, Au, Cr, Pt, Al, Ni, Mo, Pd, Ag, ITO, Al2O3, Ta2O5, SiO2

Overview

General Description

  • Six Pocket E-Beam Evaporator
  • Water-cooled, rotatable stage
  • Used for approved flexible substrates
  • Quick pumpdown to 5x10-7 torr
  • Handles up to 6" substrate

Specifications

  • Source Materials: Ti, Au, Cr, Pt, Al, Ni, Mo, Pd, ITO, SiO2
  • Deposition rates range from .2-10 Angstroms/sec
  • System Pressures of 5x10-7 torr
  • Primarily used for deposition using flexible substrates

Sample Requirements and Preparation

Make sure your sample has been properly baked when using any PR or PMMA OR POLYIMIDES.

Substrates must be solvent cleaned in the standard 3 step Toluene, Acetone, and IPA solvent clean.

Samples must be cleaned in accordance to processing needs only Flexible substrates approved by Staff are allowed in this Tool.

Maximum Thickness oxide source is 300 nanometers if you need to do more than 300nm it must be done during business hours  Mon-Fri 7-5 so staff  can check the source


Spin on Polyimide sample for metal deposition must be prepared in cleanroom.

  • Thickness: < 13um
  • Soft bake above 120 C longer than 30 seconds.
  • Curing in cleanroom /wiki/spaces/BNCWiki/pages/6228522 at:
    • 1) 200C for a minimum of 30 minutes
      Followed by: 
    • 2) A minimum of 300 C for a minimum of 60 minutes
  • Gradual cooling to room temperature (cooling overnight)


Standard Operating Procedure (Link)


Please Note: This instrument is billed per  use  based on a 4 hour block

Example : 1  user only uses the tool  per use.  When you vent the system and unload your sample that concludes your reservation .  

Example: If the usage is 10+ minutes past the initial 4 hour reservation, you will be billed for 2 uses

 

 

Questions & Troubleshooting



 I had a problem with the way the last aluminum samples turned out. It looked like there were almost pin holes or something in the aluminum layer. I am not sure if you know what may have been wrong but I can show you the samples and maybe you have an idea of what caused it. 

 

The pinholes are most likely caused by contaminates on the substrate , below are some more comments

Dr A. Kumar

Harcourt Butler Technological Institute

 Dear Dr. Sivagami

Deposit the film at higher vacuum than what you are using at present. For good adhesion, Degass the substrates before deposition. Make slightly thicker films. Anneal them after evaporation in vacuum at higher temperatures for getting rid of voids. See if you are able to solve the problem. Substrate cleaning can also be improved for better uniformity. Good luck.

Dr A. Kumar

Harcourt Butler Technological Institute

If substrates are glass plates, degassing is done by putting a heater inside the coating unit over the substrates and heat them up to 200 degree centigrade for about two hours in vacuum. The gasses absorbed comes out in this process. Switch off the heater to cool down to room temperature. Thereafter, deposit the film without exposing them to air.

Pradip Kumar Dey

Added an answer

pinholes are mainly created due to any foreign material already present in the substrate and they tries to come out through the deposited films during deposition.  Clean your substrate thoroughly in piranha solution (1:1 ratio of H2O2 and H2SO4 for 20 min. ** you can search in net for details) . Thereafter rinse in DI water and preheat in oven @ 150 deg. Cent. for at least 30 min and then place in thermal chamber for deposition. Also you should heat your substrate up to 150 deg. cent. just before deposition. For better film quality high vacuum is essenti

Reed Schmell

Independent Researcher

Pinholes are either caused by surface contamination remaining on the "cleaned" surface. Use the water break test to determine if the surface is residue free. You will see interference fringes as it dries. The fringes will be even as the water evaporates. Any island fringes or streaks means the surface is not clean. Any of these particles actually become nucleation sites as the coating is deposited


Process Library


References


  • No labels